FiveBOT

Robotic Platform Solution

FiveBOT003 Omni 3 Wheel Drive Robotic Platform

Installation

Quick Start Guide

User Manual V1.2

Table of Contents

1.	FB003 Ro	botic Platform Overview		2
2.	FB003 Or	nni 3WD Parts List		3
3.	FB003 Electronic Components			
4.	FB003 Omni 3WD Chassis Construction			. 5
5.	Sample Wiring Installation 1			
6.	Arduino C	Control Board and Sample Code		21
	i.	Introduction	21	
	ii.	Specification	22	
	iii.	Arduino control board layout	23	
	iv.	Arduino control board pin jumpers	24	
	۷.	Powering the Arduino control board	25	
	vi.	Uploading sample code to the Arduino control board	26	
	vii.	Tutorials	30	
	viii.	Sample Code 1	30	
	ix.	Sample Code 2	31	
	Х.	Dual DC Motor Speed Control	.31	
	xi.	Sample code 3: Standard PWM DC control	32	
	xii.	IO Expansion Board	34	
7.	Limited W	/arranty		35

Version History

(mm/dd/yyyy)

- v1.0 08/24/2010 Author: JY, sample code v1.0
- v1.1 03/07/2011 Authors: AJ, KL, EC sample code v1.0
- v1.2 03/16/2011 Author: AJ, Updated: New components.

1. FB003 Robotic Platform Overview

This manual will explain how to assemble and configure your FiveBOT robot. Please take your time to carefully read through this manual.

The FiveBOT003 Omni-3 wheel robotic platform robotic platform is designed for researchers and students working on robotic development. FiveBOT003 Omni-3 wheel robotic platform has vast advantages over a conventional robot designs as it has better mobility in congested environments. It is capable of easily performing tasks in environments congested with static and dynamic obstacles and narrow aisles.

FiveBOT003 Omni-3 Wheel robotic platform comes with 3 Omni-directional wheels controlled by <mark>3 DC motors</mark>, allowing rotation and movement in any direction simultaneously. The robotic platform's 3 Ultrasonic Sensors allow the FB003 to avoid obstacles in 360 degrees.

The FiveBOT003 robotic platform's maximum load capacity is 15kg. This load can be placed on top of the platform.

FIVEBRO Fivebro International Corp.

2. FB003 Omni 3WD Parts List

FB	FB3003 Omni 3WD Part List				
ID	Part Number	Part Name	QTY	Accessories	Check
1	12003	Battery Mounting Plate	1		Bettery mauning pize 12003 Qty-1
2	95002	Hex Screwdrivers	1	4 piece set	Nu Estre In 9002
3	16002	DC Motors	3	With encoders and cables	
4	14056	Omni Wheels	3		
5	12040	Power Switch Charging Socket	1	One Main Power switch, One Power switch	
6	12025	Omni Chassis	1		

7	80009	Wheel Hub Screws Bag	1	PAD BOOM
8	80014	M4 * 8 Hex Socket Head Cap Screw	6	THE REAL PROPERTY OF THE PROPERTY OF THE REAL PROPE
9	12016	Ultrasonic Rubber Grommet	6	Construction of the second sec
10	18005	Wheel Hub Assembly	3	
11	12030	Second Layer Mounting Plate	1	

3. FB003 Omni 3WD Electronic Components

ID	Part Number	Part Name	QTY	Accessories	Check
1	22002	Arduino Board, Atmega328	1	Screws	
2	22004	Arduino Expansion V1.1	1		
3	20012	Dual Ultrasonic Sensor Module	3	Cable, Screws	
4	76001	NI-MH Battery 12V 1800mAh	1		Here dears
5	76002	NI-MH Battery Charger, 500mA	1		
6	71001	Motor Encoder Cable	3		
7	71005	Arduino USB Cable	1		
8	71006	Jumper Cable	2		
9	80011	Ultrasonic Cable & Screws	3		
10	80008	Controller Screws Bag	1		

FIVEBRO Fivebro International Corp.

4. FB003 Omni 3WD Chassis Construction

Welcome to your new FiveBOT004 2 Wheel Drive Robotic Platform! Please take a moment to remove all of chassis parts from the box and check all of parts against the parts list before commencing assembly.

Please note: A Phillips screwdriver is required for assembly and is not included.

Step 4.Place the DC Motors into the holes in the Omni chassis as shown.

Please ensure that the DC motors are placed in the correct orientation with the green encoder boards facing upwards (as shown to the right).

Step 5. Use each of the screws from Step 3 to secure the DC motors into the Omni Chassis. Please be sure to tighten each screw a little, one at a time as shown in the diagram using a Phillips screwdriver.

Please double check to ensure the DC motor is secured flush to the inside wall of the chassis. If it is not, you need to tighten these screws the whole way.

Step 32. Connect the charging socket to the battery by connecting the large white plug as shown.

Step 33. Install the chassis cover.

Your chassis building is now complete!.

Please read the following section for instructions on how to connect the remaining wires in the chassis.

5. Sample Wiring Installation

Subsequent assembly instructions will make references to this figure.

The diagram below illustrates an example of how to connect the Arduino control board to the sensors, motors and battery. Please pay particular attention to the battery connections. Wiring these incorrectly will cause damage to the controller.

FIVEBRO Fivebro International Corp.

20

6. Arduino Control Board & Sample Code

A. Please read this section carefully before applying power to the Arduino control board.

B. The control board is not designed for military or medical purposes and therefore cannot be used for these applications.

C. The FB004 2WD sample code can be found on this user guide, on the accompanying CD and also under the support section of the Fivebro International website – www.fivebro.com.tw.

Introduction

The FB003's Arduino control board is a specially modified Arduino control board designed especially for robotics applications. Built from the Arduino open source platform, it is supported by thousands of open source codes and can be easily expanded with most Arduino Shields. The integrated 2 way DC motor driver and wireless socket gives you a much easier way to start your robotic project.

Specification

- Atmega328P microcontroller
- 14 Channels Digital I/O
- 6 PWM Channels (Pin11,Pin10,Pin9,Pin6,Pin5,Pin3)
- 8 Channels 10-bit Analog I/O
- USB interface
- Auto sensing/switching power input
- ICSP header for direct program download
- Serial Interface TTL Level
- Supports AREF
- Supports Male and Female Pin Header
- Integrated sockets for APC220 RF Module
- Five IIC Interface Pin Sets
- Two way Motor Driver with 2A maximum current
- 7 key inputs
- DC Supply: USB Powered or External 7V~12V DC.
- DC Output: 5V /3.3V DC and External Power Output
- Dimensions: 90x80mm

Arduino Control Board Layout

The picture above shows all of the I/O lines and Connectors on the controller, which includes:

- One Regulated Motor Power Input Terminal (6v to12v)
- One Unregulated Servo Power Input Terminal (you supply regulated 4v to 7.2v)
- One Servo input power selection jumper
- One Serial Interface Module Header for APC220 Module
- Two DC Motor Terminals Handles motor current draw up to 2A, each terminal
- One IIC/TWI Port SDA, SCL, 5V, GND
- One Analog Port with 8 analog inputs one input is tied internally to the supply voltage
- One General Purpose I/O Port with 13 I/O lines 4,5,6,7 can be used to control motors
- One Reset Button
- Jumper bank to Enable/Disable Motor Control

FIVEBRO Fivebro International Corp.

Arduino control board pin jumpers

Servo power select jumper

As most servos draw more current than the USB power source can supply, a separate servo power terminal is provided to power the servo individually which can be Enable/Disable by the Servo Power Select Jumper.

When the Servo Power Select Jumper is applied, the servo is powered by an internal 5V.

When the Servo Power Select Jumper is not applied, the servo is powered by an external power source.

Motor control pin jumper

Applying the Motor Control Pin Jumpers will allocate Pins 4, 5, 6 and 7 for motor control.

Removing the jumpers will release the above pins.

Wireless select jumper

Applying the Wireless Select Jumper will allow the controller to communicate via a wireless module such as the APC220. If no wireless module is plugged in, this jumper will not make any difference.

Removing the jumper will disable wireless module and allows the sketch to be uploaded.

Button enable jumpers

Applying these jumpers will enable push buttons S1 through S7.

Applying power

This is one of the most important steps in getting your control board up and communicating with your host controller. Your control board can be powered from its USB port (connected to your computer), from its motor power input or from its servo power input. Power from the USB port will provide the control board with enough power to upload and run sketches, but not enough power to drive servos or DC motors; for these applications, power from the servo power input or the motor power input is required.

Please note: When applying power to either the Motor Power Input or the Servo Power Input, please ensure you use the correct polarity. Reverse Polarity will damage the controller. *We are not responsible for such damage, nor does our warranty cover such damage.* Please make sure you take time to apply the power correctly!

Power from the servo power Input:

Connect the battery to the Servo Power Input. You MUST make sure that you apply power to the Power Terminal using the correct polarity (refer to "Arduino control board Layout" on page 23).

Power from motor power input: Connect the battery to the Motor Power Input. You MUST make sure that you apply power to the Power Terminal using the correct polarity (refer to "Arduino control board Layout" on page 23).

From USB: Simply connect your control board to your computer via USB cable, and the controller is able to work. Please note that the USB can supply a maximum current of 500 mA. It should be able to meet the most requirements for LED applications, however it is not enough to power servos or DC motors.

Uploading sample code to the Arduino control board

For this section you will need:

- Arduino IDE (Integrated Development Environment) software
- The FB004 sample code

The Arduino IDE (Integrated Development Environment) is a piece of software that allows you to write programs on your computer and then upload them onto the Arduino control board. The control board included in this package can be programmed using Arduino IDE version 0014 and above. It is included on the CD but can also be downloaded directly from the Arduino website at http://arduino.cc/en/Main/Software.

You will also need the FB004 2WD sample code file. It is located on the accompanying CD and it is also supplied on the Fivebro international website (http://www.fivebro.com.tw) under the support section.

Once you have downloaded and extracted both of these files, you can execute the file named "arduino.exe" and you will be presented with a screen that looks like this:

The next step is to simply connect the Arduino control board to your computer using the USB cable supplied (part #71005).

Please note: The Arduino expansion board cannot be plugged in while uploading any programs.

Using your Arduino IDE software, click File > Open > and then point the browser to the location where you have downloaded the FB004 2WD sample code. The sample code file is called "*FB004_2WDSample.pde*".

After doing so your Arduino IDE software should look like this:

Now click Tools > Board > then select "Arduino Diecimila, Duemilanove, or Nano w/ ATMega328".

Next, click File > Serial Port > and then choose one of the serial ports listed. Ports COM1 and COM2 are usually already reserved by your computer, so try COM3 or above.

Finally upload the program to the board by pressing the icon. This will compile the sketch and upload it into your Arduino control board. If uploading is successful your Arduino IDE should look like this:

RB004_2WD5ample Arduino 0022 File Edit Sketch Tools Help	
>O Dûtti 2	
RB004_2WDSample	₽
// Left Motor> M1+ // Right Motor> M2-	
// digital pins	
// Serial RX -> pinO	
// Serial IX -> pinl // AVR INTO> pin2	
// AVR INT1> pin3	
unsigned char E1=5; // Motor unsigned char E2=6;	
unsigned char M1=4; unsigned char M2=7;	
	_
Done uploading.	
Binary sketch size: S314 bytes (of a 14336 byte maximum)	
1	

If communication with the control board fails, please try selecting a different serial port. If you still cannot succeed in connecting, please refer to the troubleshooting section of the Arduino website at: http://arduino.cc/en/Guide/Troubleshooting

Tutorials

Button Press Tutorials

The controller has 7 build-in buttons, labelled S1-S7. Buttons S1-S5 use analog input, S6, S7 use digital input.

To enable S6 and S7, apply all three of the "button enable jumpers" (shown on the layout diagram, page 23). S6 uses Digital Pin2, S7 uses Digital Pin3. Once these enable jumpers have been applied, Pin 2 and 3 will be occupied by the push buttons.

// Sample code 1: One-button LED switch

//Code function: Press button S6, LED turns on, press it again, LED turns off.

```
int ledPin = 13;
int key s6 = 2;
int val=0;
void setup()
{
   pinMode(ledPin, OUTPUT); // Set Pin13 to output mode
   pinMode(key_s6, INPUT); // Set Pin12 to output mode
}
void loop()
{
    if(digitalRead(key_s6)==0) {
       while(!digitalRead(key_s6));
       val++;
    }
     if(val==1) {
     digitalWrite(ledPin, HIGH); //
     }
     if(val==2) {
         val=0:
          digitalWrite(ledPin, LOW); //
    }
}
```

// Sample code 2: Two-button LED switch

//Code function: Press button S6, turn on LED, Press button S7, turn off LED.

```
int ledPin = 13;
int key_s6 = 2;
int key_s7 = 3;
void setup() {
  pinMode(ledPin, OUTPUT);
  pinMode(key_s6, INPUT);
  pinMode(key_s7, INPUT);
}
void loop()
{
 if(digitalRead(key_s6)==0)
   {
     digitalWrite(ledPin, HIGH);
   }
 if(digitalRead(key_s7)==0)
   {
     digitalWrite(ledPin, LOW);
   }
}
```

Dual DC Motor Speed Control

Pin Allocation

"PWM Mode"			
Pin	Function		
Digital 4	Motor 1 Direction control		
Digital 5	Motor 1 PWM control		
Digital 6	Motor 2 PWM control		
Digital 7	Motor 2 Direction control		

"PLL Mode"			
Pin	Function		
Digital 4	Motor 1 Enable control		
Digital 5	Motor 1 Direction control		
Digital 6	Motor 2 Direction control		
Digital 7	Motor 2 Enable control		

PWM Control Mode

The PWM DC motor control is implemented by manipulating two digital IO pins and two PWM pins. As illustrated in the diagram above, Pin 4,7 are motor direction control pins, Pin 5,6 are motor speed control pins.

// Sample code3: Standard PWM DC control

#define LED 13 //pin for the LED labelled "L"

//motor control pins unsigned char E1=6; unsigned char E2=5; unsigned char M1=4; unsigned char M2=7;

int incomingByte = 0; // for incoming serial data

void setup() { Serial.begin(9600);

}

void advance() //advance {

analogWrite(E1,100); digitalWrite(M1,HIGH); analogWrite(E2,100); digitalWrite(M2,HIGH); return;

}

void back_off () //Move backward
{
 applogWrite (E1 100);
}

analogWrite (E1,100); digitalWrite(M1,LOW); analogWrite (E2,100); digitalWrite(M2,LOW);

FIVEBRO

```
}
void stop() //stop
{
       analogWrite(E1,0);
       digitalWrite(M1,HIGH);
       analogWrite(E2,0);
       digitalWrite(M2,HIGH);
       return;
}
void loop() {
       if (Serial.available() > 0) {
          // read the incoming byte:
          incomingByte = Serial.read();
          // say what you got:
          Serial.print("I received: ");
          Serial.println(incomingByte, DEC);
          if (incomingByte == 119) { // press "w"
            advance();
            delay(1000);
            stop();
          }
          if (incomingByte == 115) { //press "s"
            back_off();
            delay(1000);
            stop();
          }
     }
}
```

IO Expansion Board

To support RS485 interface or drive 4 motors, IO Expansion Board is available.

Arduino main controller board combine with expansion board

FIVEBRO Five

6. Limited Warranty

FIVEBRO ONE YEAR LIMITED WARRANTY

Fivebros warranty obligations for this FiveBOT (this "Product") are limited to the terms set forth below.

Fivebro International Corp. ("Fivebro") warrants to the original end-user purchaser that this Product will be free from defects in materials and workmanship under normal use for a period of 180 days from the date of retail purchase (the "Warranty Period"). This warranty is extended only to the original end-user purchaser of a new product that was not sold "as is". If a defect arises:

(1) you may within 1 year from the date of retail purchase (or such other period specified by the return policies of the place of purchase) return this Product to the place of purchase, together with the original proof of purchase and either the original box or the UPC code label from the box, and this Product will be replaced or, in the event that a replacement for this Product is not available at the place of purchase, either a refund of the purchase price for this Product or an store credit of equivalent retail value will be provided; or

(2) you may after the day that is 30 days from the date of retail purchase (or such other period specified by the return policies of the place of purchase) and within the Warranty Period contact Fivebro Customer Support to arrange for the replacement of this Product. In the event that a replacement for this Product is not available this Product will be replaced by Fivebro with a product of equivalent or greater retail value.

A purchase receipt or other proof of the date of retail purchase is required in order to claim the benefit of this warranty. If this Product is replaced, the replacement product becomes your property and the replaced Product becomes Fivebros property. If the place of purchase refunds the purchase price of this Product or issues a store credit of equivalent retail value, this Product must be returned to the place of purchase and becomes Fivebros property.

EXCLUSIONS AND LIMITATIONS

This warranty covers the normal and intended use of this Product. This warranty does not apply: (a) to damage caused by accident, abuse, unreasonable use, improper handling and care or other external causes not arising out of defects in materials or workmanship; (b) to damage caused by power line surge, lightning or acts of God; (c) to damage caused by service performed by anyone who is not an authorized representative of Fivebro; (d) to any hardware, software or other add-on components installed by the end-user; (e) if this Product has been disassembled or modified in any way; (f) to faulty installation or set-up adjustments; (g) to consumable parts, such as batteries, unless damage has occurred due to a defect in materials or workmanship; (h) to cosmetic damage, including but not limited to scratches, dents or broken plastic, or normal wear and tear. Regardless of whether the camera is in use or not, exposure to extremely bright lights or objects can damage the CMOS camera sensor. This warranty specifically excludes any damage to the CMOS sensor resulting from exposure to extremely bright lights or objects, whether accidental or deliberate.

THIS WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS AND YOU MIGHT ALSO HAVE OTHER RIGHTS THAT VARY FROM STATE TO STATE. FIVEBROS RESPONSIBILITY FOR PRODUCT DEFECTS IS LIMITED TO THE REPLACEMENT OF THIS PRODUCT OR THE REFUND OF THE PURCHASE PRICE FOR THIS PRODUCT. ALL EXPRESS AND IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES AND CONDITIONS OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE LIMITED IN TIME TO THE TERM OF THIS LIMITED WARRANTY. NO WARRANTIES, WHETHER EXPRESS OR IMPLIED, WILL APPLY

AFTER THE EXPIRATION OF THE LIMITED WARRANTY PERIOD. If any term of this warranty is held to be illegal or unenforceable, the legality or enforceability of the remaining terms shall not be affected or impaired.

EXCEPT AS PROVIDED IN THIS WARRANTY AND TO THE EXTENT PERMITTED BY LAW, FIVEBRO IS NOT RESPONSIBLE FOR DIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES HOWSOEVER CAUSED RESULTING FROM BREACH OF WARRANTY

OR CONDITION OR UNDER ANY OTHER LEGAL THEORY, INCLUDING BUT NOT LIMITED TO LOSS OF USE. THE FOREGOING LIMITATION SHALL NOT APPLY TO DEATH OR PERSONAL INJURY CLAIMS, OR ANY STATUTORY LIABILITY FOR INTENTIONAL AND

GROSS NEGLIGENT ACTS AND/OR OMISSIONS.

SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR CONSEQUENTIAL DAMAGES, OR LIMITATIONS ON HOW LONG AN IMPLIED WARRANTY LASTS, SO THESE LIMITATIONS MIGHT NOT APPLY TO YOU. Valid only in R.O.C. and U.S.A.

Fivebro International Corp.

35

Manufactured and distributed by 2010-2011 Fivebro International Corp. Product names, designations, and logos are trademarks or registered trademarks of Fivebro International Corp. All right reserved.

Fivebro International Crop. 1105 Room, 11F, No. 206, Song Jiang Rd., Taipei City 10467, Taiwan, R.O.C. Email: <u>sales@fivebro.com.tw</u> Web: <u>www.fivebro.com.tw</u>

Customer service line: +886 2 2562 8445 Customer online support: <u>http://www.fivebro.com.tw/supprot/support.html</u>

We recommend that you retain our address for future reference. Product and colors may vary. Printed in Taiwan. This product is not suitable for children under 3 years

This user manual should be kept as it contains important information.

