====== Available computers and servers ====== {{tag>hardware}} ===== Computers ===== | Name of the computer | Brand | Operating System | Type of system (bits) | RAM (Go) | Processor | disk memory | hardware | used for | | PC-EQI05710 | Dell Latitude | Windows 7 | 32 | 8 | Intel Core i5-33220M | 214/300 | 2 USB3 ports | Poppy and kinect2 | | [[ihsev laptop|ihsev]] | Dell Lattude E6410 | Ubuntu 14.04 LTS | 32 | | Intel Core i5 CPU M 520 | 158 | USB2 only | Nao | | [[greiner]] | Dell PowerEdge | Ubuntu | | 128 | 32 coeurs | 193G | server only. Has 2 [[https://www.nvidia.fr/data-center/tesla-k80/|GPU Nvidia Tesla K80]] | cuda, theano | | [[gazebo server|gazebo]] | | Ubuntu | 64 | 128 | 32 coeurs | 196G | server only | ROS | ===== Servers ===== ==== Greiner ==== Greiner has two GPUs. login to greiner: * ip : ssh -X login@greiner.enstb.org * login : ton_login_ecole check the sate of the gpu with command nvidia-smi For geiner, the output is : +-----------------------------------------------------------------------------+ | NVIDIA-SMI 396.24 Driver Version: 396.24 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | |===============================+======================+======================| | 0 Tesla K80 Off | 00000000:06:00.0 Off | 0 | | N/A 50C P0 58W / 149W | 0MiB / 11441MiB | 0% Default | +-------------------------------+----------------------+----------------------+ | 1 Tesla K80 Off | 00000000:07:00.0 Off | 0 | | N/A 36C P0 74W / 149W | 0MiB / 11441MiB | 100% Default | +-------------------------------+----------------------+----------------------+ +-----------------------------------------------------------------------------+ | Processes: GPU Memory | | GPU PID Type Process name Usage | |=============================================================================| | 0 93895 C python3 10941MiB | | 1 93895 C python3 10863MiB | +-----------------------------------------------------------------------------+ Par défaut, Tensorflow alloue l'ensemble de la mémoire GPU au programme, même s'il n'en nécessite que 10%. Il existe une option permettant d'allouer seulement la mémoire GPU nécessaire. Il faut ajouter les lignes suivantes: config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = tf.Session(config=config) ==== Gazebo ==== Login to gazebo: * you must first connect to the School VPN. Official instructions are on https://intranet.telecom-bretagne.eu/page.php?idContenu=5061 : * On linux you can install `vpnc` and use the following configuration in `/etc/vpnc/tb.conf`: * IKE DH Group dh2 IPSec gateway 192.108.116.206 IPSec ID vpnrire IPSec secret rire Xauth username * Then run `sudo vpnc tb` to start the vpn * On macos, Open up your System Preferences and select "Network". Click on the little + button at the bottom of the window to create a new connection.Pick "VPN" for the Interface and set the VPN type to "Cisco IPSec". It doesn't matter what you set as the service name. Click on "create". As Server address, input "192.108.116.206" and in the account name and passwords use your login and password for the school identification. As authentication settings, input the group name "vpnrire" and the shared secret is "rire". * You can now ssh to gazebo like this: * `ssh -X login@gazebo.enstb.org` * where login: ton_login_ecole Update 20180802: Where is the desktop?? ==== Backup1 ==== To login, you need first to send Jerome or Mai your ssh public key. Then, you can connect by ssh laborobo@backup1.enstb.org Contents: * VM (Virtual machines) * UbuntuRobot : Ubuntu virtual machine with gazebo (turtlebot) and ros installed. Description in [[simulatorgazebo|Simulateur Gazebo]] * Keraal