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Chapter 1

Spatial Description

1.1 Manipulator Structure

A manipulator is a mechanical structure consisting of rigid bodies,
called links, connected together through joints. The part of the ma-
nipulator that interacts the most with the surrounding environment is
the last body in the chain of the manipulator’s structure, called the
end-effector. Based on the task the manipulator is performing, the
end-effector can be a variety of devices: a mechanical gripper, a tool, a
vacuum-operated positioning device. The first part of the manipulator
is typically fixed in the environment and is called the base.

The configuration of a manipulator is determined by the positions of
its joints. To a given configuration of the manipulator correspond a
unique configuration of end effector, which can be described by the
the effector position and orientation. The model describing the rela-
tionships between the manipulator configuration and the end-effector
configuration is called the forward kinematics of the manipulator. In
this chapter, we will focus on the development of the forward kinematics
of a manipulator.

Here we assume that each joint can only perform one degree-of-freedom
(1 DOF) motion. We will distinguish between two types of joints:
prismatic joints which provide linear motion between links and revolute
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Figure 1.1: General Manipulator

joints which provide rotational motion between links, as illustrated in
Figure 1.1. We denote by n the number of joints that the robot has.

Our first goal is to describe the configuration of the manipulator. In
general, a manipulator has n joints and n + 1 links (including the base
and the end-effector). We want to describe the configuration of all these
connected rigid bodies. To describe the configuration of the system, we
need to select a set of parameters that allow to determine this config-
uration. Such parameters are called configuration parameters. There
are many different possibilities for selecting these parameters. One ap-
proach is to attach a frame to the base of the manipulator and then
to locate all the moving links by vectors with respect to that fixed
frame, as illustrated in Figure 1.2. Since the configuration of a rigid
body can be described by 3 vectors locating 3 different points of the
body, this would result in 9-parameter representation for each of the
links. Obviously, this is not an efficient approach for the description
of the configuration of the manipulator, as it would require 9 x n pa-
rameters for describing the configuration of the n moving link of this
manipulator. In the next section, we will introduce a particular set of
parameters, called generalized coordinates, which provides a minimal
representation of the manipulator configuration.
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9 parameters/link

Figure 1.2: Generalized Coordinates

1.1.1 Generalized Coordinates

A set of generalized coordinates for a manipulator is a set of indepen-
dent configuration parameters. The number of generalized coordinates
defines the number of degrees of freedom of the system. In other words
the number of DOF of the system is determined by the number of
generalized coordinates needed to describe the system. For a system
having n + 1 links and n joints we want to determine how many de-
grees of freedom the system has, or alternatively how many generalized
coordinates will be needed to describe it.

We will start by disassembling the manipulator. This generates an n+1
rigid bodies, of which 1 is fixed to the ground and n are completely free
to move. The task now is to describe their configuration in space.

The configuration of a rigid body in space can be described by six
parameters: three parameters for the position of a point on the rigid
body and three other parameters for describing its orientation. Full
description of the configuration of this system with n free moving bodies
requires 6 X n parameters.

Rigid bodies can move with respect to each other. However in the
manipulator these motions are constrained because the bodies are con-
nected. The connections through joints will introduce constraints on
the motion of the rigid bodies. Let us now assemble the manipulator
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by connecting the rigid bodies with the joints. Each joint has 1 DOF
allowing a single motion — revolute or prismatic. Thus each joint will
introduce 5 constraints on the motion of the free rigid bodies. We have
n joints, thus in total the connections will introduce 5 X n constraints
on the motion of the system. The number of generalized parameters
that are needed to describe the configuration of the system will be the
difference between the number of parameters for all free rigid bodies
and the number of constraints introduced by the joints,

6 Xn—5xn=n.

This is also the number of DOF of the system. Thus a manipulator that
has n joints, will have n DOF and will require n generalized coordinates
to describe its configuration.

As mentioned above, the joints that we will consider are either prismatic
or revolute. A prismatic joint {¢} results in a linear (translational) mo-
tion that is measured as a displacement d; between the two neighboring
links. If joint {¢} was revolute, it would result in a rotational motion
that would be measured with an angle 6; between the corresponding
links. To unify the description of the different coordinates associated
with linear motion and rotational motion, we introduce a common co-
ordinate ¢; that will denote both types. The type of a joint {i} is
determined by a binary parameter ¢; defined as

{ 0 for a revolute joint 6;;
€ =

(1.1)

The 2-th joint can be then described by the coordinate ¢;, defined as

1 for a prismatic joint d;.

¢ = €b; + eid; (1.2)
where
€=1-¢
The coordinates ¢, qs, ..., q, provides a minimal set of parameters for

describing the manipulator configuration. This is the set of generalized
joint coordinates of the manipulator.

In the next section we will introduce representations for the configura-
tion of the end effector of the manipulator.



1.1. MANIPULATOR STRUCTURE 3

1.1.2 Joint and Operational Coordinates

Figure 1.3: 3DOF Revolute Mechanism

Consider the mechanism shown in Figure 1.3. This is a planar mecha-
nism where the links of the manipulator are moving in the plane of the
paper and the axes of the joints are perpendicular to that plane. There
are three links with three revolute joints described by the parameters
01, 05 and 03 defined as the angles between the axes of the consecu-
tive links (including the ground described by axis X). Once we have
defined these 3 parameters we have a unique description of the configu-
ration of the system. The 3 parameters are the three joint coordinates
of the system. The space defined by 6, f; and 605 is called the joint
space of the manipulator. A point in that space defines a configuration
of the mechanism. Inversely every configuration of the mechanism is
represented by a point in the joint space.

We can also describe a space that defines the configuration of the end-
effector (gripper) of the manipulator, i.e. its position and orientation.
For example the position of the gripper can be described by the position
of the point at the end-effector in the plane (x,y). The orientation of
the gripper can be described by the angle o between the X axis of the
fixed base and the vector connecting the base point O and the end-
effector point. The end-effector configuration in the example above is
defined by the 3 coordinates (z,y, «).
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For the general case of spatial manipulators, we will need three Carte-
sian coordinates, x, y, and z to represent the position of the end-
effector, and a three other coordinates, e.g. three angles «, 3, and
~, to represent its orientation.

The end-effector position and orientation coordinates provide a descrip-
tion of the manipulator task or operation and are called task coordi-
nates, or operational coordinates'.

While the joint coordinates describe the configuration of the entire ma-
nipulator, the task or operational coordinates describe the configuration
of the end-effector. The next objective is to establish the relationships
between these coordinates.

1.1.3 Position and Orientation of Rigid Bodies

We will first introduce the various notions that are needed to develop
the relationships between the manipulator and effector coordinates. We
start with the basic definition of the position of a point in space.

A point in space can be described as a vector locating this point with
respect to some origin or reference point, O. Once the point O is fixed,
a point P in space can be described by the vector p = (’)—77, representing
the position of this point with respect to O, as illustrated in Figure 1.4.

We distinguish between the vector p and its components. The vector p
represents the position of point P with respect to origin O. Its compo-
nents are determined by the frame with respect to which this vector is
evaluated. These components vary from frame to frame. Consider the
frame denoted by {A} in Figure 1.5, with unit vectors X4,Ys, and Zy4.
The © denotes that these are unit vectors. A point P described by p
will have in frame {A} the components (px,,py,,pz,). If we describe
it in a different frame we will have a different set of coordinates. The
components of p in frame {A} will be denoted by the column matrix

by extension to the position, these coordinates are sometimes called Cartesian
coordinates.
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Figure 1.4: Position of a point

4p. This is

a rigid body is i the position of a point fixed in that rigid
body. For example in Fi 1.5, the vector “p describes the position

of the pomt P fixed in tk®rigid body.

e orientation of the rigid body can be described in many different
ways. They all involve defining the orientation of a frame { B} fixed in
sWfct to some reference frame {A}. We will select
the frame origin of fralne { B} to coincide with the point P described
above. This frame is fixed with respect to the rigid body and will move
as the rigid body moves. The frame {A} is fixed in the environment.

In order to model the orientation, we need to describe the position
and orientation of frame { B} with respect to frame {A} . In the next
section we will do that using the four vectors 4p, 4 Xg,4Y5,4Z5.
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Y.
s 1 A g B
Z, Zs
i %
-
Yy
4
Xa

Figure 1.5: Rigid Body Configuration

1.1.4 Rotation Matrix

The relationship between different descriptions of a vector relies on
the notion of rotation matrices. A rotation matrix 4R describes the
orientation of frame {B} with respect to frame {A}. In this notation,
the leading subscript B and superscript A point to the two frames
involved in this transformation.

The columns of the rotation matrix are simply the three unit vectors
of frame { B} expressed in frame {A}. If r;; are the elements of this
matrix, the rotation matrix is given by

11 Tiz2 713 ) ) )
éR = 21 292 23 = [AXB AYB AZB] (14)

sy T3z 733

The components of vector Xp in {A} are given by the dot product of
Xp with the vectors X4, Yy, and Z4.

AXp=| Xp.Yy (1.5)
Xp.Z4
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Similarly we can compute AVy and 4 Zp and write the rotation matrix
in the following form

)A{B.):(A XA{B-):(A ZAAB-):(A
gR=|XpYy YpY4 ZpYy (1.6)
XB.ZA YB.ZA ZB-ZA

Note that the dot products above are not expressed in any particular
frame — the dot product computation can be performed in any frame
with respect to which both vectors are expressed.

A iA
Bl Ay
(B} /
z O ¢,

Figure 1.6: Simple Rotation of a frame

An important property of this matrix is that the rows of this matrix
are the components of the three unit vectors of frame {A} expressed
with respect to frame {B}

BXZ;
aR=["Xp g 4Zz]=|PVI| =4R" (1.7)
BZ114“

This property is illustrated in the example of Figure 1.6, where frame
{B} is obtained from frame {A} by a 90 degrees rotation about the X
axis
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10 0\ «2X7
gR=10 0 —1| <57 (1.8)
01 0/ Bz

As can be seen, the rotation matrix from frame {B} to frame {A} is
equal to the transpose of the rotation matrix from frame { A} to frame

{B}
gR:BRT

Since the inverse of the rotation matrix describing { B} with respect to
{A} is the matrix describing {A} with respect to { B}, we obtain

Ap-1_ B A pT
gl =4l =31
Thus the inverse of a rotation matrix is equal to its transpose

éR_IZART

This is a general property of orthonormal matrices (a matrix with or-
thogonal unit columns and rows).

1A} .

A
PB ORG o

Figure 1.7: Frame description
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The quantities that we defined so far allow us to describe frames. A
frame describes the position and orientation of a rigid body. It is defined
by the three unit vectors AXB, AYB and AZB and the vector that locates
the origin of the frame. The notation we will use for this vector is ApBOTg
- the origin of frame { B} expressed in frame {A}. Thus a frame is the
set of four vectors AXB,AYB,AjB,ApBOTg (see Figure 1.7). A frame
{B} will be represented by {B} = { 4R “PBory }-

1.2 Transformations

In order to describe the end-effector configuration with respect to the
base of a manipulator, we need to establish the relationships between
descriptions in different frames attached to different links along the
manipulator’s structure.

1.2.1 Pure Rotation Transformation

For example in Figure 1.8, a point P is defined by the vector connecting
it to the origin of frame {A}. The components in { A} of this vector will
be different from those computed with respect to frame {B}, having
the same origin.

B :

Figure 1.8: Mapping between frames
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The coordinates of the vector p in {A} are the dot products of vector
p with the unit vectors X4, Y4, and Z4. The dot product computation
can be done in any frame, in particular in frame {B}

., BXA-BP B)A(}; ;
p=|"YaPp [ =|7Y] |."p (1.9)
BZA Bp BZ114“

p=AR-Pp (1.10)

This establishes the relationship between the description of a vector p
expressed with respect to a frame {B} to its description with respect
to a frame {A}, having the same origin.

Notice the arrangement in this notation of the leading sub- and su-
perscripts. The leading superscript of p matches the subscript of the
rotation matrix. This arrangement is very effective when dealing with
more complex chain multiplication.

1.2.2 Pure Translation Transformation

[{B}
AP
NA P

PBORG >

Oa

Figure 1.9: Translation of frames
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We have so far described relationships for transformations involving
pure rotation of frames. Figure 1.9 shows an example where a frame
{B} is translated with respect to frame {A} without rotation. This
motion can be described by the vector denoting the position of the
origin of frame {B} with respect to the origin of frame {A}, pporg/0.,-

Let us consider an arbitrary point P in the space. This point can
be described with respect to frame {A} (vector pp,) or frame {B}
(vector po,). This situation is different than before, because now we
have two different vectors describing the position of the same point. In
the rotation case, we had the same vector described in two different
frames. A translation operation is a mapping that is transforming a
vector describing some point with respect to some origin point to a
vector describing that same point with respect to another origin point.
The difference between the two vectors is exactly the vector describing
the position of the origin of the frame { B} with respect to the origin
of frame {A}, PBorg/0,, and thus

Po, = Pog + PBorg/0 4 (111)

As before this vector relationship can be expressed in any frame (in
particular with respect to frame {A}).

Figure 1.10: Homogeneous Transform
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1.2.3 General Transformation

A general transformation would involve both a rotation of a frame and
a translation of the rotated frame. We can implement the general trans-
formation by first performing a rotation to make the axes of the two
frames parallel, and then translating them. The resulting relationship
is

ApOA = éRBpoB + ApBOTg/OA (112)
In the next section we will rewrite this equation in a matrix form that
can be very useful for uniform fast numerical computations.

1.2.4 Homogeneous Transformation

The general transformation in equation 1.12 can be written in a com-
pact form that is more suitable for compound transformations and prop-
agation of description between links. This is called the homogeneous
transformation, which is obtained by augmenting the relationship of
equation 1.12 by one dimension. We will form a 4 x 4 matrix, where
the primary blocks are the 3 x 3 rotation matrix and the position vec-
tor “ppory/Oa. The last row of the 4 x 4 matrixis [0 0 0 1]. The
vectors 4p and Pp are also augmented by 1 to make them 4-dimensional
vectors. The resulting equation is

Bbo,,
1

éR ApBOTQ/OA
0 0 0 1

4po.,
1

(1.13)

The homogeneous transformation matrix matrix will be denoted by 47
and the above relationship can be written as

po, = 5Taxe)"Pos (1.14)
The homogeneous transform combines both the rotation of { B} to { A}
and the translation of the origin of {B} with respect to {A}. This
transform represents one of the basic tools for the kinematics of mech-
anisms.
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Example We will illustrate this concept with the example depicted
in Figure 1.11. The origin of frame { B} in the figure is translated to a
position [0 3 1] with respect to frame {A}. We would like to find
the homogeneous transformation between the two frames in the figure.
In particular for a point P defined as [0 1 1] in frame { B}, we would
like to find the vector describing this point with respect to frame {A}.

B}, v,

XA
Figure 1.11: Example of Homogeneous Transform

The matrix 47" is formed as defined earlier using the rotation matrix
and the given translation vector. The result is

10 0 0
o 00 -1 3
=10 o (1.15)
0 0 0 1
Since p in frame {B} is
0
B 1
P=, (1.16)
1
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we can compute the vector p in frame {A} using the relationship 4p =
ATB
B P,

(1.17)

b
— NN O

1.2.5 Transforms as Operators

The transforms presented above allow us to change the descriptions of
points in space from one frame to another. However, these transforms
can be also viewed as operators acting on points and changing their
locations in the space. In that case, rotations and translations will
be described as operators moving one point into another point, with
respect to the same frame.

AL
P

R
B\ |
7

Figure 1.12: Rotation: Changing Description
Let us first consider the rotation matrix. As illustrated in Figure 1.12,

the rotation matrix allows to change the description of a point P from
one frame {A} to another frame {B}. This is

p = ARp (1.18)
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Figure 1.13: Rotational Operator

In Figure 1.13, the rotation matrix is acting on a vector locating a
point Py and transforming it into a different vector locating a different
point P, through a rotation the X axis. The rotation matrix in this
case is treated as a rotation operator about the x axis. In the general
case, this operator can act about an arbitrary vector k with an angle
6. Applying the rotation operator to vector p; produces another vector
p2. The corresponding relationship is:

p2 = [(0) pa (1.19)

A rotation about the X axis, for example, is given by

1 0 0
R.(0) =10 cosf —sinf (1.20)

0 sinf cosd

If p; was given as [0 2 1] and the rotation was of an angle 30° the
resulting vector would be :

1 0 o0 ]7fo 0
pa=Rx(@)p1= |0 08 —06||2]|=py=|1 (1.21)
0 06 08 |[1 2

Next we will consider the translation as an operator. With our previous
interpretation of translation, a point P (see Figure 1.14) is described
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Figure 1.14: Translation Operator

as a vector pps with respect to the origin of frame {A}, or pop with
respect to the origin of frame {B}. Here we are describing the same
point with two different vectors and the relationship is:

Poa = pPos + PBorg (122)

When viewed as an operator, a translation Q (¢) : P — P2) moves a
point P; (described by vector py) into a point P (described by vector

pz)

p:=p1+¢

In this case we have a description of two different points with two
different vectors. These vector equations can be expressed in any frame.
In a matrix form, the homogeneous transform is

P2 = Top1



1.2. TRANSFORMATIONS 19

where
1 0 0 ¢,
N U
Ty = 00 1 g (1.23)
0 0 0 1

(¢ Gy, q-) are the components of the vector ). Note that these are only
variables in the representation of the translational operator.

In the general case, the rotational operator and translational operator
are combined in a general transformation operator, T, defined below
similarly to the homogeneous transform:

p2 = ( ORI"(')(G)O 612) P (1.24)

The operator T acts on p; to produce ps,

p2=1 p1

This representation constitutes the third interpretation of the homoge-
neous transformation. The first one is a description of a frame. The
second is a transform mapping that changes the description of a point
in space. The third is a transform operator that moves points in space.

In the next section, we will define the inverse of a transformation.

1.2.6 Inverse Transforms

To compute the inverse of a generalized transform, we will consider
inverses of the rotation and translation transforms. We already showed

that the inverse of a rotation is simply given by the transpose of that
rotation, B~ = RT.

For a pure translation, the inverse is given by the same vector with an
opposite sign. As illustrated in Figure 1.15, Pporg/0, = —PAorg/0p-

The presence of both translation and rotation in the homogeneous
transform slightly complicates the inverse problem. In particular the
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Figure 1.15: Inverse Transform

inverse of the transform is not equal to its transpose because this 4 x 4
matrix is not orthonormal (7! # TT).

The inverse of a homogeneous transformation matrix

AR Ap

A B Borg/O 4

A=, 5" i (1.25)

1s the matrix

AT_l = BT = éRT _éRT'ApBOTQ/OA — ER BpAOTg/OB

B 0 0 0 1 0 0 0 1
(1.26)

In the above equation. The rotation part comes directly from the in-
verse of the rotation matrix, while the translation part represents the
vector defining the origin of frame {A} expressed with respect to the
origin of frame {B}. The minus sign comes from the inverse of the
translation, while the pre-multiplication by 4 RT is needed to express
the vector in the same frame {B}.

We are now ready to propagate the transform descriptions along the
kinematic chain.
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1.2.7 Transform Multiplication

We described the transformation from one frame to another as well
as its inverse. Next we will combine those transformations so that we
can move from some far away frame (attached to the end-effector of
the manipulator) to the base frame (attached to the fixed ground).
Suppose we have three frames {A}, {B} and {C} and we know the
transformations from {A} to {B} and from {B} to {C'}. What is the
new compound transformation that takes us from frame {A} to frame

{Cy?

Figure 1.16: Compound Transformations

The result is very simple - it is just the multiplication of the two trans-
formation. We first express:

Pp = BT (1.27)
and
Yp=3TPp=3T8Tp =T p (1.28)

Thus
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AT = 4TET (1.29)

In other words the 4 x 4 matrix representing the transformation from
{A} to {C}is AT, which is the product of the 4 x4 matrices representing
the two given transformation 47 and ET'. Since matrix multiplication is
not commutative, one has to pay special attention to the order in which
the matrices are multiplied. The matrix 47" can be written explicitly
as:

gRgR gRBpCOTg + ApBOTg

Am _
CT_OOO 1

(1.30)

1.2.8 The Transform Equation

As we described earlier, a manipulator consists of many links starting
from the fixed base and continuing through to the end-effector. There
are frames associated with all those links and we need to propagate the
parameters describing the frames in order to build a transformation
representing the end-effector frame {F} with respect to the fixed base
frame {B}. The manipulators usually work in a real world environment
with movable objects (e.g. a machine part that needs to be picked
up) placed on top of fixed objects (e.g. a work table). There is a
frame describing the work table, as well as a frame associated with the
movable machine part. Typically we know the transformation between
the manipulator base frame and the work table frame as well as between
those of the work table and the machine part. The goal is to calculate
the transformation between the frame associated with the machine part
that needs to be picked up by the manipulator and the end-effector’s
frame.

To do that we can use a simple relationship called the transform equa-
tion. The idea is that if we start along the chain of bodies involved
and we move in the same direction, we will get back to the point from
which we started. If we multiply all the transformations involved we
should obtain the identity transformation. In the notations of Figure

1.16:
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U
gl

Figure 1.17: Transform Equation

ATYTETSTIT =1 (1.31)

From this equation we can extract what is unknown. If for example we
need T we can solve the matrix equation and find Y7' = YTETSTET.
In terms of the transforms given in the figure Y7 = YTETET-10T,

In the developments above, we have not explicitly specified the type
of parameters that we will would like to use for the description of the
position and orientation. The discussion in the next section is concerned
with some of these representations.

1.3 Configuration Representations

The end-effector position and orientation is completely defined by the
(4 x 4) homogeneous transformation 7. However, this representation
involves a large number of redundant parameters and a more compact
representation of the end-effector configuration is needed. The position
and the orientation of the end-effector (depicted in Figure 1.18), with
respect to the base can be represented as
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{E}

gT . position + orientation

Figure 1.18: End-Effector Configuration

b [Xp] position

gl (1.32)

orientation

There is a variety of sets of 3 parameters for position representations
that can be used based on the task that the manipulator is performing.
We can use Cartesian coordinates of the end-effector (,y, z), Cylindri-
cal coordinates (p,0,z) or Spherical coordinators (p, 8, ¢) as depicted
in Figure 1.19. Going from one representation to another is quite easy -
there are well known explicit formulas for that purpose. The real prob-
lem comes when we start considering orientation representation. There
is no universal agreement in the field of robotics as to what is the best
orientation representation and each representation has advantages and
shortcomings.

1.3.1 Direction Cosines

We introduced previously one orientation representation - the rotation
matrix. Using frames attached to the end-effector and the base, we can
describe the orientation of the end-effector by the compound rotation



1.3. CONFIGURATION REPRESENTATIONS 25

A

Figure 1.19: Describing the position of a point

matrix developed in the previous sections. The direction cosines repre-
sentation is simply the set of nine parameters involved in the rotation
matrix. This matrix can be written as:

1 Tiz T3
R=|ry 7192 ras|=[r1 72 73] (1.33)

sy T3z 733

The columns of the rotation matrix can be concatenated and arranged
in a 9 x 1 vector:

X, = | g (1.34)

3 1 (9x1)

This is the direction cosines representation of the orientation. There are
6 constraints amongst these 9 parameters - 3 because the columns of the
matrix are unit vectors and 3 because these vectors are perpendicular.

[r1] = [ro| = |r3] =1 (1.35)

and
mM.ry =7r.1r3 = re.ry3 = 0 (136)
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Thus of these 9 parameters only 3 are independent. Clearly for most
cases 1t is better to find a more compact representation.

1.3.2 Euler and Fixed Angle Representation

A very common selection of orientation parameters is the three-angle
representations. There are many different choices for these angles.

G
AN R

b
Fixed Angles Euler Angles
(12 sets (12 sets)
XA
{A} 7 {A} A

{B"} {B}

Figure 1.20: Three angles representation

Let us consider the two frames {A} and { B} illustrated in Figure 1.20.
Imagine we start from the configuration where {B} is coincident with
frame {A}. To reach the final configuration of { B}, we can proceed in
the following manner. First we rotate about X4 to achieve frame { B'}.
Next we have two choices: (i) rotate with respect to one of the axes of
{A} that are fixed, or (ii) rotate with respect to one of the axes of { B'},
obtained from the first rotation. If we proceed with respect to the axes
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of {A} we will obtain the so-called fized angles representation. If we
proceed with respect to the axes of {B’} and continue with the new
frames that we generate, we will obtain the Fuler angle representation.
In fact these two representations are dual and for every fixed angle
representation there is a corresponding Euler angle representation.

We need to do a total of three rotations with three angles «, 3 and
~. There are 12 possibilities for both the fixed and the Euler angle
representations. The notation XY Z means that we have a first rotation
about axis X followed by a rotation about Y and finally a rotation
about axis Z. Naturally we do not need to consider alternatives where
there are two consecutive rotations about the same axis since they are
equivalent to one rotation with the sum of the two angles.

Let us consider for example the Z — Y — X-Euler angle representation,
illustrated in figure 1.21. Starting with frame { A} we rotate about axis
Z4 of an angle a to obtain frame {B’}. The corresponding rotation
matrix is 4,R = R.(a). Next we rotate about the newly generated
Y axis of frame {B’} of an angle 8 and obtain the frame {B”}. The
rotation matrix here is %, R = R, (/). Finally we rotate about the axis
X of {B"} of an angle 4 to obtain frame {B} with a rotation matrix
B"R = R.(v). The resulting matrix 4R is simply the product

!

A A B B
BR — B/R //R B R

or

gl = Ry(a) Ry(B) Rx(y)

Let us now consider the X — Y — Z-fixed angles representation. Fixed
angle rotations can be best understood from the point of view of small
instantaneous rotations. They also have an analog in aerospace en-
gineering. Let us think in terms of airplane control with the 7 axis
pointing vertically up and the X axis pointing in the direction of the
flight. Then rotation about the 7 axes is yaw, rotation about the X
axes is roll and rotation about the Y axes is pitch. The sequence now
is: 7 rotation about X of {A}, then a 8 rotation about Y of {A} and
a «a rotation about 7 of {A}.
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s R=R, ()R, (B)-Ry (¥)

Figure 1.21: Euler Angles (Z-Y-X)

The rotation about X of an angle « is a rotation operator which acts
on a vector v transforming it into into R,(7)v. The result of the first
operator is subject to the second rotation resulting in R,(5)(R.(v)v),
and finally from the third rotation leads to R,(a)(R,(3)(Rz(7)v)). In

sumimary

Rx(v):v— Rx(v)v (1.37)
Ry () : (Bx(y)v) = Ry (B)(Rx(v).v) (1.38)
Rz(a): (By(B)Rx(v)v) = Rz(a)(Ry (8)Rx(v)v) (1.39)

Comparing this result with the Euler angle rotation obtained above, we
can see that the X —Y — Z-fixed angles rotation of angles (v, 3, «) is
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Zp
{A}
B
{ } | 40k (yaW)

Y

/ N
(roll) v / B pitch)
XA

Figure 1.22: Fixed Angles (X-Y-7)

equivalent to the Z — Y — X-Euler angles rotations of angles («a, 3,7).
This illustrates the duality principle mentioned above.

R =3Rxyz(7,5,a) = Rz(a)Ry(8)Rx(7) (1.40)

1.3.3 Inverse of an Orientation Representation

The end-effector position and orientation is determined by the com-
pound homogeneous transformation B7" which will be computed as a
function of joint angles through the so-called forward kinematics, as dis-
cussed in Chapter 2. The rotation part of this transformation 2R con-
tains the information about the orientation of the end-effector. Given
the elements r;; of the matrix R, the problem is to extract from this
matrix the parameters selected to represent the orientation. For the
Euler angle representation this is to find the three angles «, 8 and ~
corresponding to the elements r;; found from the forward kinematics
(the propagation of the link parameters along the kinematic chain).
For the Z'Y’ X" Euler angle representation with angles «, 3 and v, the
matrix 4R is
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ri1 T2 T3 ca.cff ca.sf.sy — sa.cy  ca.sf.cy 4 sa.sy
BR=|ry 12 1| = |sachf sa.sB.sy4 cacy  sa.sB.ey — ca.sy
Tal T3z T33 —s/3 cB.sv cf.cy
(1.41)

We have used here the abbreviation ca and sa to denote cos(a) and
sin(a).

There are 9 trigonometric equations with 3 independent parameters
a, f and ~. In this case, # can be found from rqq, 91 and rs,

— B = [r2 42
1= RN s st TR (2

This assumes that r7, + r3, is not zero. Knowing 3, we can easily find
a from r9; and 711, and 7 from r3; and rs3, namely:

 rem(TE T
oz—AtanZ(cﬂ, cﬂ) (1.43)
v = Atan2(22, 72 (1.44)

BB
We have used the 2-argument Atan2(y,x) function which computes

tan™! (%), but uses the signs of both = and y to determine the quadrant
in which the resulting angle lies.

If 72, + r2, = 0, that means that ¢ = 0, sf = +1 and we are at a «
singularity of the representation. Here it is for § = £90°. In this case,
the angles o and 4 cannot be determined. We can only determine o+~
or « — . Namely, it ¢ =0, s = 41 then

2R=1 0 cla—7) s(a—7) (1.45)

And it ¢ =0, sp = —1 then
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0 —s(at+y) —claty)
éR =10 clat+vy) —s(la+7) (1.46)
1 0 0

As an example, for the configuration shown in Figure 1.23, from Rzy/x/(a, 8,7)
we can derive

a=0, =0, v=90° (1.47)

Formulas for finding the corresponding rotation angles can be similarly
obtained for all Fuler or fixed angle representations.

Za
Yg {A}

Zg’ *Ya

XB XA

Figure 1.23: Example of a Z-Y-X Euler Rotation

1.3.4 Equivalent Angle - Axis Representation

So far we have considered rotations about the primary axes of the
frames attached to the objects. It can be shown that any rotation from
one frame to another can be represented by a rotation about some axis
with some angle 6. Given two frames {A} and {B} with a common
origin (i.e. one frame can be rotated into the other), we can find an
axis K and an angle # such that {B} can be obtained from {A} via a
rotation about K of angle §. This representation is called the equivalent
angle - axis representation, which is illustrated in Figure 1.24.
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y {A}
(B} K

Figure 1.24: Equivalent angle - axis representation

If k;, ky, and k, are the components of the unit vector k, the rotation
matrix about k with an angle # can be represented by the vector k
scaled by the angle 6 as

Okx
X, =0k = | Oky (1.48)
Ok

To solve inversely for k and 6 we can use

kpkyv0 + 0 kpkyv0 —k.s0  kyk,v0 4 ks
Ry (0) = | kpk,v0 + k.80 kyk,00+c0  kyk.00 — k.30 (1.49)
kpk.v0 — kysO  kyk,00 4 kys0  k k004 0
Here
vl =1—ch (1.50)

(Given a rotation matrix

1 T2 T3
Ri(0) = |ra1 rap 723 (1.51)

sy T3z 733
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we can determine

ri1+ree a3 —1

6 = Arccos( 5 ) (1.52)
and
1 T'3g — T'23
Ak = Sang | 712 e stngularity for sinf =0 (1.53)
21 — T'12

Note that this is a 3 parameter representation (two independent pa-
rameters for the unit vector k and one angle #). Note also that for
configurations where sin(#) = 0, we will have a singularity of the rep-
resentation.

The next representation avoids such singularities.

1.3.5 Euler Parameters

Sometimes we would like to have a redundant representation, i.e. use
more than three parameters, but use as few as possible, ideally use four
parameters.

With three parameters in some cases we can not access some of the
configurations of the manipulator. Nine parameters (direction cosines)
are far too many but with four we will have a minimal singularity-free
representation.

To derive the Euler parameters we will use a unit vector w with com-
ponents (w,,w,,w.) and a rotation about it of an angle §. The Euler
parameters are

€1 = W, sin — (1.54)

€9 = Wy sin = (1.55)
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Y

Figure 1.25: Euler parameters representation

0

€3 = w, sin 9 (1.56)
0
£4 = COS 9 (1.57)

As we can see, the sum of the squares of these parameters is one,

W|=1, el+teit+eitei=1 (1.58)

This normality condition shows that only three of the parameters are in-
dependent. The parameters (£1,¢2,¢3,£4) define the unit hyper-sphere
in four - dimensional space because of the Normality Condition.

The rotation matrix associated with Euler parameters is

™M1 Ti2 T13 11— 25% — 25:2)) 2(5152 — 5354) 2(5153 + 5254)

91 To9 To3 | = 2(5162 + 5354) 1-— 25% — 25% 2(5253 — 5154)

31 T332 T33 2(5153 — 5254) 2(5253 + 5154) 1-— 25% — 25%
(1.59)

The inverse problem for ¢4 is easy to solve since the sum of the diagonal
elements is 4 * (¢4)*> — 1 (using the Normality Condition), i.e.
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rint o a3 =3 —4(e] + 5 4 e5) =4ef — 1 (1.60)

or

1
€4 = 5\/1—|-7“11 + rog + 133 (1.61)

The rest of the parameters are easily determined using &4 in the de-
nominator, i.e.

T'3g — T'23 s — T3t 21 — T'12
1= 22 =" gy= = (1.62)
454 454 454

The only possible singularity occurs when ¢4 = 0. As it turns out, we
can do what we did with ¢4 for any of the other parameters. For example
taking ry1 —r99 —r33 we can easily find e1, etc. Because of the normality
condition, it is not possible for all four of the Euler parameters to be
zero at the same time. Thus one of the £;’s will be non-zero and we
can always find an unique solution to the inverse problem. In fact the
following is true:

Lemma: For all rotations, at least one of the Euler parameters is
greater than or equal to 1/2.

Thus we can find the maximal € and use that to solve for the rest of
the parameters. In particular, if

g1 = max {e;} (1.63)
then:
1
&1 = 5\/7"11 — T'992 — TI'33 + 1 (164)
o, = Tt ) (1.65)

451
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(rs1 + 713)

Eg = —————
451

€4 = (7“32 - 7“23)
451

Similarly, if

€2 = max {52}
K3

then
1
€y = 5\/—7“11 +rog — 13z + 1
If
€3 = max {e:}
then

1
€3 = 5\/—7“11 —7r9g + 1733+ 1

(1.66)

(1.67)

(1.68)

(1.69)

(1.70)

(1.71)

We can also find the Euler parameters using the Fuler angles from the

formulas below:

g @ -7
51—81n2608 5
. Le—7
52—81n281n 5
o+

£3 — €OS — sin

2 2

(1.72)

(1.73)

(1.74)
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(1.75)

3 —cos—cosoz_l_’y
T 2
These formulas constitute another proof that the Euler parameters do
not have singularities since we only use o, 4~ and J—~ in the above
equations, which can be always determined uniquely.

In the next chapter we will define a set of link related parameters which
will help us derive the forward kinematics formulas for a general ma-
nipulator.

1.4 Exercises

1. A vector 4P is rotated about 74 by 1 degrees and is subsequently
rotated about Y4 by ¢ degrees. Give the rotation matrix which
accomplishes these rotations in the given order. What is the result

if v = 45° and ¢ = 60°7

2. A frame {B} is located as follows: initially coincident with a
frame {A} we rotate {B} about Y5 by ¢ and then we rotate the
resulting frame about Zg by 1 degrees. Give the rotation matrix,
4R which will change the description of vectors from ZP to 4P.
What is the result if ©» = 45° and ¢ = 60°7

3. A wvelocity vector is given by

6.0
By =1 1.0
5.0

Given

0.8 0.0 0.6 4.0
0.0 1.0 0.0 7.0
—0.6 0.0 0.8 2.5 |’
0.0 0.0 0.0 1.0

compute 4V,
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4. For sufficiently small rotations so that the approximations sin f =

0, cosf ~ 1, and 0% ~ 0 hold:

(a) Derive the rotation matrix equivalent to a rotation of § about
a general unit axis K. Start with Eqn. 1.49 for your deriva-
tion.

(b) Show that two infinitesimal rotations commute; that is, show

Ri (Q)RK’ (¢) = Ry (ﬁb)RK(G)-

5. Determine the Euler parameters ¢q, ¢, €3, ¢4 for the following ro-
tation matrix:

=

Il
S
§|Hw||>—tw|>—t

o§|“§|“



Chapter 2

Kinematic Model of
Manipulators

2.1 Direct Kinematics

The descriptions that we introduced so far are of general natureand are
independent of the structure of a particular manipulator. The spatial
descriptions allow us to calculate the position and orientation of the
frame associated with the end-effector of a manipulator with respect
to the frame associated with its fixed base. In this chapter we will
introduce a set of parameters specific to robotic manipulators. They
can be used to describe rotational and translational motion in the joints
connecting the links of the manipulator. We will show how to establish
relationships between these parameters for neighbouring links. We will
use these relationships to propagate descriptions along the chain of links
in a manipulator and derive its forward and inverse kinematic models.

2.1.1 Link Description

A manipulator consists of a chain of links starting from the base (typi-
cally fixed in the workspace) propagating to the end-effector (the grip-
per that interacts with the environment). Consecutive links are con-

39
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nected by joints which exert the degree of freedom of the motion of the
link. For clarity of presentation we will mainly concern ourselves with
simple rotational and translational motion of the links. By default each
joint will have one degree of freedom (dof) - rotational or translational.

Let us consider the i-th link in the kinematic chain. This link is con-
necting two joints. At the end of link ¢z there is an axis with respect to
which the next link, ¢ + 1 , is going to move. There is also an axis in
the beginning of link 2. Those two axes are lines in a three dimensional
space. They are characterized by a common normal. This common
normal has a length that we will call link length. This is one of the
parameters describing link.

Axis i

Axis (i -1)
Link i -1

Figure 2.1: Link description

In Figure 2.1 a;_1 (the "link length”) denotes the length along the
common normal from axis (¢ — 1) to axis (7).

To define two axes in space, in addition to the common normal, we need
to compute the angle between the axes. In particular we can draw a
parallel line to axis (¢) at the point where the common normal intersects
the axis (¢ — 1). The angle between this parallel line and axis (¢ — 1),
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denoted by «;_1, will be called "link twist”. This angle is measured in
the right- hand sense about the vector defined by a;_; directed from
axis (¢ — 1) to axis (¢) along the common normal. Figure 2.1 illustrates
this notation.

Often in industrial robots there are consecutive axes that intersect at a
point. For example in the manipulator known as the ”Stanford Shein-
man Arm” which we will consider later, axes 2 and 3 intersect at a right
angle. In this case the twist angle «;_1 is +90° or —90° . As shown in
Figure 2.2 when there are intersecting axes, the definition of link twist
will be free in terms of direction.

Alternatively two consecutive axes can be parallel. This is the case
in the example of three links planar manipulator that we used in the
previous chapter. All three axes in that example are parallel and per-
pendicular to the plane of the manipulator. In that case the link twist
is 0°.

Axis

Axis ;4

Figure 2.2: Intersecting joint axes

The link length and the link twist describe the configuration of a par-
ticular link in the kinematic chain. There are two other parameters
that describe the connections between any two consecutive links. Link
(1 —1) is determined by its corresponding joints i — 1 and 7. Let us con-
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sider the next link (¢) in the chain. That link will have a link length, a;,
and angle, ;. If we consider the line along axis (7), the distance along
this line between the common normal for link (¢ — 1) and the common
normal for link (¢) (between axes (¢) and (¢ + 1)) is a parameter called
"link offset”. It is denoted by d; in our terminology.

Axis i

Link i
Axis (i -1)

Figure 2.3: Relationship between links

The angle between the two common normals mentioned above, mea-
sured about axis (¢), is the forth parameter in the representation. It is
called ”joint angle” and it is denoted by 6;. All parameters are depicted
in Figure 2.3.

The link length and the link twist are always constant since we consider
only rigid links. However the link offset and the joint angle can be either
constant or variable. In particular, for a revolute joint ¢ the joint angle
f; is variable and the link offset d; is constant. Alternatively for a
prismatic joint ¢, the link offset, d;, is a variable and the joint angle, 8;,
is constant. For the three link planar manipulator from the previous
chapter all joint angles are variable. For the Stanford Scheinman Arm
one of the link offsets is a variable (along the prismatic joint).
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We will introduce a convention for assigning the values of the four link
parameters for unique representation of the links. Those parameters
determine the complete relationship between link (¢) and (¢ — 1). They
will define the homogeneous transformation between those two links.

Axis i+1

Figure 2.4: Frames propagation between links

The first and the last links in the chain need special convention consid-
eration. Clearly from the definition above, a; and «; depend on axes (¢)
and (7 + 1). We can also propagate those along the chain as depicted
in Figure 2.4. Thus having the axes in space will define ay,az,...,a,_1
and a1, ag, ..., a,_1. We do have the freedom of choosing ag, ap and
a,, a,. By convention we try to assign zeroes to everything we can.
Thus we will try to select ag = ag = a, = a,, = 0. This will also de-
termine how the frame attached to the base is selected. In other words
we will select frame 0 and frame N so that the parameters above are
Zeroes.

Similar considerations can be used for the two other parameters ; and
d;. Those parameters by definition depend on links (7 —1) and (¢). Just
as above fy,...,0ny_1 and da,...,dy_1 are clearly defined.

For link 1 there are two options: In Figure 2.5, if axis 1 is a revolute
one, we will select dy = 0. In that case 8, is variable depending on the
motion of axis (1).
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Axis 1

Figure 2.5: Revolute First Link

Axis 1

Link 2

Figure 2.6: Prismatic First Link

If axis (1) is prismatic (as in Figure 2.6) we select 6; = 0 since dy is
variable. Similarly if axis N is revolute we select dy = 0 and if it is
prismatic, then dy = 0.

These four parameters (o, a;,8;,d;) describe the relationship between
two links. They are called the Denavit-Hartenberg parameters. For
each joint, three of these parameters will be fixed and one will be vari-
able. That variable is either #; if the joint is revolute or d; if it is
prismatic. The first two parameters provide the description of the link
itself and the next two describe the connection with the next link. A
transformation between two successive links can be expressed in terms
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of these four parameters. In order to do that, we need to attach frames
to the links.

Axis (i -1)

Link i -1

Figure 2.7: Affixing frames to links

The next step in the process is to attach frames to the links. By conven-
tion we select as the origin for frame (i —1) the point at the intersection
of the common normal between links (¢ —1) and (¢) with the axis (1 —1).
Axis (1 — 1) itself will be used for the Z,_; axis and the X;_; points
along the common normal from axis (¢ — 1) to axis (¢). The Y axis is
selected to make a direct frame (Cartesian frame with the right hand
rule).

The frame consisting of X;, Y; and Z; is defined in a similar fashion.
From that definition it can be seen that if joint (¢) is revolute, the joint
variable is the angle between X;_; and X;. If it is prismatic the distance
d; between X;_; and X; along Z; is the variable. The assigned frames
are depicted in Figure 2.7.

When there are intersecting axes we will need to deal with the freedom
in assigning the directions. For example Figure 2.8 illustrates the case
when axes (7) and (¢ + 1) are intersecting. In this case we take the
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Figure 2.8: Frames on intersecting axes

perpendicular to both in the point of intersection and assign X; along
it in such direction that the angle is measured from axis (¢) to (¢ + 1)
in a positive sense. The origin of the frame is at the intersection of the
two axes.

The first and the last link in the kinematic chain require special at-
tention. Let us consider the first link of the mechanism with frame
0 attached to the fixed base. There are 2 possible cases: If the first
joint is revolute (depicted in Figure 2.9), then frame 1 attached to link
(1) rotates with respect to the fixed base. We have a freedom in se-
lecting the reference frame 0. We will select it in such way so that
agp = ag = d; = 0. Thus when 6, =0 — {0} = {1} (the zero and the
first frame coincide). This assignment will simplify the computations.
In some cases however we might want to choose frame 0 differently to
facilitate measurements with respect to alternative fixed frames.

If the first joint is prismatic (as pictured in Figure 2.10), we can choose
frame 0 to be parallel to frame 1 with a displacement d; between the
origins. Thus ap = 0,9 = 0,0, =0 . When d; = 0 the two frames are
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Figure 2.9: Frames on revolute first link
coincident again, i.e.

d =0 {0} = {1} (2.1)

The last link is handled similarly. If the last joint is revolute we set
frame 0 so that dy = 0, thus for 6, = 0 — x,||z,—1 (the axes are
collinear) as in Figure 2.11.

If the joint is prismatic, as in Figure 2.12, we will select frame 0 so that
On = 0. Then if dy = 0 the two X axes are again collinear.

To summarize, we introduced the four parameters in Figure 2.13: Link
Length a; is the distance between (Z;, Z;11) along X;. Link Twist «;
is the angle between (7;, Z;41) about X,. Link Offset d; is the dis-
tance between (X;_1, X;) along Z;. Joint Angle 6; is the angle between
(Xi_1, X;) about Z;. At any time one of these four parameters will be
variable and the rest will be constant.

There is a simple procedure that can be followed to define the frame
attachment along the kinematic chain. We start by defining the axes
along the joints. Next we define the common normals. The origins of
the frames go at the intersections of those normals with the joint axes
as in Figure 2.14. The Z-axes of the frames point along the joint axes
at each of the origins. The X-axes point along the common normals
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At}
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1 »

Figure 2.10: Frames on prismatic first link

at each of the origins. The Y-axes are defined by the right-hand rule,
perpendicular to the X and 7 axes at each of the origins.

2.1.2 Examples

Let us consider a simple example depicted in Figure 2.15 - a RRR
(revolute-revolute-revolute) manipulator. This is a planar example with
three joint variables - 61, 65, 65, that describe the rotation about each
of the axes.

All 7 axes are perpendicular to the plane of the manipulator. The X-
axes are along the common normals as denoted. The origins of frames
1, 2 and 3 are at the joint axes and the Y axes are defined so that the
frames are direct. X3 is selected so that it is collinear with X5 for 83 = 0
and X, is selected to be collinear with X; when 6, = 0. Similarly the
origin of frame () coincides with the origin of frame 1 and Xj is collinear

with X; when 6, = 0.

For clarity of the representation we will arrange the D&H (Denavit and
Hartenberg) parameters in a table, where for each link (¢) the entries
are: «;_1,a;,_1,d; and #;. The parameters are arranged in such order
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Figure 2.11: Frames on last revolute link

Z
Z n

n-1
d X,
n

xn-1 /

Figure 2.12: Frames on last prismatic link

because, as we will see later, that combination of parameters is used to
compute the transformation matrix from frame 2 — 1 to frame .

oo i dp b
1 0 0 0 6
2 0 &L 0 0 (2:2)
3 0 [y 0 65

Since all 7 axes are parallel (perpendicular to the plane of the manip-
ulator), ap = a1 = as = 0. We chose frame 0 so that ag = d; = 0.
Because all X axes are in the same plane, d; = dy = d3 = 0. The joint
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Axis i+1

Figure 2.13: Frames assignment

angles 6y, 0, and 05 are variables, and a; and a, are constants denoted
by [; and [; in the example.

Another more complicated example is described in the Figure 2.16. The
mechanism in the Figure starts with a revolute joint (denoted by the
tapered cylinder). The first joint is connected to the ground as denoted
by the slanted marks on the first axis. The output of the first joint is
itself an axis for the second joint which is prismatic. This is denoted by
the two small triangles with a common vertex in the figure. This joint
translates along its axis. The third joint is revolute and perpendicular
to the plane of the paper - it is denoted by the circle with a point in
the middle (a top view of the joint). The output of the corresponding
link is the fourth joint of the mechanism which is also revolute. At the
end of the mechanism there is a gripper, the symbol of which is shown
in the figure.

Typically a mechanism like this is given in some configuration. To
describe it, we need to assign frames, find the D&H parameters and
build the table for the mechanism. The frames positions are depicted
in the figure. Note that axis Z3 is perpendicular to the plane of the
paper and is represented as a point. Note also that there is freedom in
the assignment of frame 2, which is typically resolved by moving from
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Figure 2.14: Frame attachment propagation

link (0) to link (1) and assigning the 7 axis pointing upwards.

In this example the origins O3 and O4 coincide because the third and
the fourth axes intersect at that point (and are perpendicular). This
configuration is sometimes called a ”wrist point” and it is very common
for a number of manipulators. In addition to the four frames associ-
ated with the links, we can introduce a frame 5 at the end-effector
point. This frame is selected so that its origin is at the point defined
by the end-effector and the corresponding frame is parallel to frame 4.
To complete the table of D&H parameters we need to introduce the
distances Lo, L4 and Ls.

If the axes were assigned alternatively (downward vs. upward), some
of the angles in the D&H table would have been —90° rather than
+90°. For every static configuration of the mechanism we can also add
a column in the table that shows the values of the variables at that

state (eg 01 = 0, d2 = Ll, 03 = 0, 04 = 1800)

We will leave it as an exercise for the reader to build the corresponding

D&H table.

2.1.3 Propagation of Frames

The important role of the D&H parameters is in determining the trans-
formation matrices between the frames. For link (¢—1) with joints (¢—1)
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Figure 2.15: RRR Manipulator

and (¢) we can draw frames ¢ — 1 and ¢ as shown in Figure 2.17. We
can also determine a;_1,a;_1,d; and ;. These parameters will be used

(1=1)

to calculate the transformation matrix ;7T from frame ¢ — 1 to frame

2.

In order to compute this transformation matrix, we need to introduce
three additional frames. First we will translate frame ¢ to frame P so
that the origin of frame P lies on the common perpendicular of the
axes (i — 1) and (7). The transformation T is a simple operator of
translation D, along the 7 axis with magnitude d;. The second frame
we will introduce is denoted by () and is the result of a simple rotation
R. about the axis 7Z at an angle ; so that the X axis of frame @) is
along the common perpendicular. The next step is to translate frame
() along the common perpendicular to a new frame R whose origin
coincides with the origin of frame ¢ — 1 . This is a simple translation
D, along the X axis at a distance a;_;. Finally, we can rotate frame R
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Figure 2.16: RPRR Mechanism

W
o

into frame ¢ — 1 via a simple rotation R, about the X axis on an angle
a;_1. The compound transformation that takes us from frame : — 1 to
frame 1 1s:

ST = T ETETI T (2.3)
This matrix can be written as the product of the operators above, i.e
Uiy, aiy, 05, di) = Ro(aiy)Do(ai_1)R.(0;)D.(d;) (2.4)

It we multiply the matrices corresponding to the simple rotations and
translations about the major axes, the result is:

cei —302' 0 a;_1

isip | Sbicaicr cbicaioy —saio —saioq.d;

o= s;.sa;_1 cbisai_1 caiq cov;_q.d; (2.5)
0 0 0 1

This is the principal formula describing the relationship between two
successive frames using the link parameters.
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Link i
Axis i -1

Link i -1

Figure 2.17: Frames for manipulator kinematics
2.1.4 Kinematics of Manipulators

Using the kinematic chain and the relationship from the previous sec-
tion, we can compute the transformation from the base link (0) of the
manipulator to the last end-effector link by multiplying the transfor-
mation matrixes for the consecutive frames

OT =91l AT (2.6)

In the case of the Stanford Sheinman Arm, the frame attachment is
illustrated in Figure 2.18. Note that the offset of the arm is denoted
as dy in the figure and it is NOT a variable. The six variables are 61,
0y, ds, 04, 05 and 05. The wrist point is where the origins of frames
4,5 and 6 are located. The D&H table is given below. The overall

transformation matrix is computed in the Appendix.
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Figure 2.18: Frames on Stanford Sheinman’s arm

1 0

2 -90° 0 dy 0,

3 90° 0 dy 0 (2.7)
40 0 0 6

5 —90° 0 0 65

6 90° 0 0 b

The following set of equations depicts a representation for the final
position and orientation of the mechanism as a function of the joint
variables and parameters. The position is given in Cartesian coordi-
nates and the orientation is given by the direction cosines of the end-
effector in frame 0.
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™

XR . T2
[XP] B T3
Xp

[ C1[C2(C4C5Cs — S4S6) — S9.55Cs] — S1(94C5Cs + CySg) T
S1[C2(C4CsCs — S456) — S9.55Cs] + 01(540506 + C4S6)
—955(C4C5Cs — S4.5¢) — C3.55C
C1[—C2(C4C586 + S1Cg) + 5255.56] — S1(— 540556 + C4C)
S1[=C2(C4C5856 + S4Cg) + 525556] + C1(—54C556 + C4Cs)
S9(C4Cs556 + S4Cs) + C25556

N C1(C2C485 + 52C5) — 5159455

S1(C2C4Ss + S2C5) + €154
—5904S55 + CyC5
C1S9ds — Sidy
S152ds + Chdy
Cads

(2.8)

2.1.5 Direct Kinematics

£ (forward kinematics

Jomt Space Task Space

(dimensions n) (dimensions m)

Figure 2.19: Direct Kinematics Mapping

The representation that we have discussed so far is known as the for-
ward (or direct) kinematics of the mechanism. As depicted in Figure
2.19 it is a mapping between the joint space of dimension n and the
task space of the manipulator of dimension m.

The joint space is formed by all possible values for the joint variables.
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q1
q2

L dn |
The parameters (¢;) represent angles (6;) for revolute joints and dis-

placements (d;) for prismatic joints. The common notation for the
cases of revolute and prismatic joints is:

¢ = &bl + :d; (2.10)
where

0 revolute joint
1 prismatic joint

ei=|{ (2.11)

In that notation

g = 1-— &; (212)

The task space of the manipulator is formed by all possible values for
the position and orientation of the end-effector of the manipulator.

€1
T2

x= | (2.13)

Lm

The relationship x = f(q) describes the forward kinematics. Given the
function f for any set of values for the joint variables, we can find the
corresponding task coordinates of the manipulator.

For a vector q
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a=(qa @ - @)" (2.14)

0T =92T(q) defines the forward kinematics and can be written as:

x = f(q) (2.15)

This relationship is sometimes called the ”Geometric Model” of the
manipulator because it is determined solely by knowing the geometry
of the manipulator.

| eﬁ
yO 3 .

E 3

|
2/0,

[

Figure 2.20: 3 dof example

For the example that we considered earlier in Figure 2.20 the vector
X(«,y, «) for the position and the orientation of the planar RRR ma-

nipulator is:
x
X = y =
e

Note: The notation ¢z denotes cos(6+63). Similarly s12 = sin(6146,).

licr + lheq
l1s1 4 l2812

0 + 05+ 05

(2.16)

The orientation a of the end-effector is simply the sum of the joint
angles 61 4 0 + 03 (as expected for a planar mechanism). Using this
representation, for any given set of joint variables q we can find a unique
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position and orientation of the end-effector. Unfortunately the inverse
is not true. If we are given the vector x, there are a number of possible
values of q that will result in the same x using the formulas above.
Finding these values of q is the goal of the Inverse Kinematics method
which we will describe next.

2.2 Inverse Kinematics

2.2.1 Existence and Multiplicity of Solutions

Finding the inverse kinematics of a mechanism is a difficult task because
of the multiplicity or non-existence of potential solutions. The formulas
defining the direct kinematics typically involve trigonometric equations
(when revolute joints are present). Solving these equations for the joint
angles and the link offsets is not at all trivial. At the same time solving
the inverse kinematics is an important practical problem. Usually the
goal for the manipulator motion is defined in task coordinates and there
is a need to be able to quickly compute the necessary joint variables
trajectory for achieving this motion.

' W}

\ o

(B

Figure 2.21: Base to Wrist frame kinematics

In the general case, if we consider the 6 dof manipulator pictured in
Figure 2.21 with joint variables ¢, ¢z, . . . ., g6, the forward kinematics is
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given by the transformation from the base frame B to the wrist frame
W - %T = 8T(q17 42,943,494, s, Q6)

The end- effector position Xp and orientation Xg form the vector

x= || = st (2.17)

The inverse problem is to find q given 7T or x, or to find q = f~(x).
In matrix form this problem can be written as:

gT(QhQ%QS;Q%QS,%) — %T (218)

The right side of the equation is known (e.g. as numbers) and the
system has 12 equations with 6 unknowns (the joint variables). Out of
those 12 equations only 6 are independent (3 for the position and 3 for
the orientation). Thus effectively we have 6 equations with 6 unknowns.
However the equations are highly non-linear and involve trigonometric
functions (if revolute joints are present). The system typically have an
infinite number of solutions, but can occasionally have no solutions at

all.

We will illustrate the notion of multiple solutions with some examples
in the next section.

2.2.2 Closed Form Solutions

There are two possible approaches to solving the general system de-
scribed in the equation above - algebraic and geometric. We will
illustrate these approaches in the example of the 3 dof mechanism used
throughout this chapter (see figure 2.20).

Consider first the geometric solution. Using the cosine theorem in
Figure 2.22 we can solve for the second joint angle #,. The equation:

B4 15+ 21y cos 0y = 23 + yp (2.19)
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A

Yo

A

Figure 2.22: Geometric Solution example

gives us

(x5 +y3) — T+ 1)
20,15

(2.20)

cos fy =

from which we can determine two solutions: #, and —#,. Similarly we
can find 6, i.e. the cosine theorem gives us

Iy =1+ (x5 + yo) — 2L/ ad + y§ cosy (2.21)
from which

ity 212

cosy = (2.22)
201/ 2% + 1yl
We can also compute the angle 3 from
tan g = 22 (2.23)

T

The first joint variable #; is simply

0, =3+~ (2.24)
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depending on the sign of #;. Since we have computed 6; and 65, we can

find 05 from:

03 = Qg — (01 + 02) (225)

Overall there are two possible solutions, based on the two different
values for 6.

Figure 2.23: Algebraic Solution example

We can solve the same problem using an algebraic approach depicted
in Figure 2.23. The starting point is the relationship defining the for-
ward kinematics §7 = B, T. We can write this explicitly as:

c123 —5S123 0 hep + e cag —sopg 0 29

5123 C123 0 lis1+ lasig | s@o Chyp 0 wo
0 0 1 0 - 0 0 1 0 (2.26)
0 0 0 1 0 0 0 1

The right side of this equation is derived following the observation that
the end-effector point is at a position (zg,yo) with respect to the base
frame, and at an angle ap with the Xy axis of the base frame. The left
side was derived using the propagation of D&H parameters described
in the previous section.
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Equating the elements (1,1) and (2,1) on both sides of the equation we
can obtain:

cos(01 + 02 + 03) = cos ag

sin(fy + 0, + 05) = sin ayg } = 014 0, + 03 = o (2.27)

To find 6, and 6, we use elements (1,4) and (2,4) of the matrix:

llcl + 12012 = X (228)

and

lis1+ las12 = yo (2.29)

In order for (x¢, yo) to be in the workspace of the manipulator, we need:

2 2\ _ (72 2

—1 < cosby = T <
12

From this relationship we obtain

0y = Atan 2(£4/1 — cos? O, cos f) (2.31)

Now we can again use formulas (2.29) and (2.30) for ; rewritten as:

(I + lLea)er — (lzs)s1 = 51?0}
2.32
(lh + l2e2)s1 + (Ias2)cr = yo ( )
which can also be written as
klcl — kQSl = $0}
2.33
k151 + ke = yo ( )

In the above formula we have grouped all terms depending on the vari-
able A, in the functions k; and k. An alternative representation for £
and ks is:
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r=/ki+ k2 i
= 1 COs
(k1o ka) — — = — S (i) (2:34)
tany = ko/ky

Using that representation we can obtain

xo = rcos(fy + ) (2.35)

Yo = rsin(fr +7) (2.36)

Solving the last two equations for §; we can obtain:

61 = Atan 2(yo, xo) — Atan 2(ks, k) (2.37)

To complete the algebraic solution, 5 can be found using the fact that

014+ 05+ 05 = .

As in the geometric case there are two pssible solutions of the inverse
kinematics problem determined by the two possible values for 5 in the
formulas above.

2.2.3 Pieper’s solution

The same approach can be used to find the inverse kinematics solution
for a general six dof mechanism with the last three axes intersecting (see
Figure 2.24). This solution is part of a class of solutions first derived
by Pieper in his thesis work at Stanford University.

The last three frames of the mechanism have the same origin - point
P = Oy4. Let us consider the representation of the vector from the fixed
origin of the manipulator to that point in the different frames of the
figure. In frame 1 this vector is 'p = }T(#3)*p. In vector form the
representation can be written as:
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Figure 2.24: Pieper’s solution example

g1

1 92
= 2.38
| & s ( )

1

where ¢; = g¢i(ca, $2, fi) are functions of 63 and the remainder of the
terms grouped in the expressions f;-s.

In frame 3 the same vector is

as
3.0 —SOég.d4
p= COég.d4

1

(2.39)

Since the coordinates of *p are only dependent on the variable f; we
can write

=T (240)

and similarly
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€191 — S192

Op = [T AL op _07(p,)'p (2.41)
93
1

These relationships are resolved moving forward along the chain. We
know that °p = pg. From there:

€191 — 5192 Zo
S101 —|— C192 = Yo (242)
g3 20

From the first two elements

€191 — S192 = o } 0, and are known 2.43
S$191 + €192 = Yo vif o - 2

Thus #; can be computed as

61 = Atan2(yo, vo) — Atan2(g2, ¢1) (2.44)

From the equation above we can derive the following relationships for

023

2 2 2 _ .2 2 2 .2
0, : {91‘|‘92‘|‘93—$0‘|‘?Jo‘|‘zo—r0 (2‘45)

g3 = 2o

Here ¢g; = gi(e2, s2, f1, f2, f3). Those equations can be re-written as;
(k102 + k282)2a1 + k3 == Tg (246)

(leQ — kQCQ)SOél + k4 == ZO (247)

where k; = k;(f1, f2, f3). Thus 6y is known if k;-s are known.

If we solve the last set of equations for #5 we obtain:
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05 : (rg — k3)2520z1 + (Zo — k4)24af = 4@%32a1(kf + k;) (2.48)

where

ki = ki(fi(es, 83)) (2.49)

Finally we will use the method of "Reduction to Polynomials” to solve
the transcedental equations for k;. This method relies on a change of

variable u = tang which reduces to:

0 cos f = 1=
e — = 1+u?
U tan 5 [{ sinf = 1?_1;2 ] (250)

It we use this change of variables for 5 and k; we can denote 03 : k; =
ki(u,u?) and obtain:

0
Aut + Bu® + Cu* 4+ Du+ E =0, withu :tam?3 (2.51)
There are a number of well known methods for solving 4th degree poly-

nomials.

Having solved this equation, we can find u (which will give us 63), then
k; and work back along the chain to solve for the rest of the parameters.

The last three variables 84, 85 and g will be computed using the equa-
tion SR(O) = Ry which can also be written as:

6 1(0) = Y R(01)3R(02)5 (05 )4 R(04)5 R (05 )¢ R(0s) (2.52)

The first three matrices in the right side of the equation depend on the
variables that we have already computed. They can be grouped in one
known term. The fourth matrix can be written as:

1R(04) = {R|g,—0Rz(04) (2.53)

and the overall equation can be expressed as:
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[3 Rlo,=0(01, 02, 05)][R2(04)5R(05,06)] = Ro (2.54)

Another way to write this equation is:

R(04,05,06) — R6 (255)

In that representation we have moved all the known quantities (com-
puted using 6q,60; and 65) on the right side of the equation. We have
also combined them with matrix Ry to form the now known matrix R}
on the right.

The equation above can be solved for 84, 65 and 6¢ using the Euler
Angle approach (among others).

That completes the algebraic solution for the 6 dof revolute manipulator
using Pieper’s solution. Many of the commercially used robots have a
geometry that matches this configuration or are similarly designed to
allow an explicit algebraic approach.

When the algebraic or the geometric approaches are not possible, the
only option is to use Iterative Solutions to the inverse kinematics prob-
lem. However there are a number of cases where a solution to the
inverse kinematics problem does not exist. We will illustrate this in the
next section.

2.2.4 Existence of Solution

Since the kinematic equations are often described by trigonometric
equations we might not have a solution to these equations. Let us
consider the following example: Figure 2.25 depicts a 3 dof manipu-
lator with all axes perpendicular to the surface of the paper at the
points of the joints. The manipulator is drawn in some configuration.
The task is to move the manipulator to a certain final configuration at
point (x¢,yys) and orientation ay.

We can derive the forward kinematics equations as described by the
matrix 75. 6y, 6, and 63 are the joint variables for the revolute joints.
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N3
*a

(Xo:Yo); %o

Figure 2.25: Existence of solution example

We can also write this transformation matrix in terms of the position
and orientation of the end-effector as shown in the following equation.

cies —s123 0 lier + lyero cag —sag 0 xg
o 5123 C123 0 lisy + 2812 _ SQo Chyp 0 wo
3 0 0 1 0 0 0 1
0 0 0 1 0 0 0 1
(2.56)

In order for the solution to exist, we need to find values for the joint
variables 01, A5 and 05 that make these two matrices equal and possible.
One condition like that is:

(h—h)? <zi+ys < (L +1L)? (2.57)

In this example 8; + 0, + 03 = « and if the condition above is satisfied,
from the first two elements of the last column we can find 8, and 6,
giving us a solution to the inverse kinematics problem.

The points that can be reached by the manipulator are depicted in
Figure 2.26. In that figure the center represents the fixed base of the
manipulator. Consider first all the points in the inside circle with radius
1 — 5. In this case [; (the length of the first link) is larger than [y (the
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-

Figure 2.26: Workspace of a manipulator

length of the second link). None of the points in the inside circle can
be reached geometrically by the manipulator. We can also come to this
conclusion by looking at the forward kinematic expressions, i.e. there
will not be a solution that allows us to reach these points.

The points that we can reach with the manipulator define the ”workspace”
of the manipulator. In the figure above, the points that can be reached
by the manipulator lie in the area enclosed by the large outside circle
(with radius [; +[3) and the small inside circle (with radius ly —[3). For
all other points, there is no solution to the inverse kinematics problem.

In the example so far we have assumed that the links can rotate through
a full 360° around their axes (by convention from —180° to +180°).
However in practice there are always ”joint limits” defined by the me-
chanical design of the manipulator. For the example of our manipulator
with joint limits defined as:

0 <6 <180° (2.58)

0 < 6, < 180° (2.59)
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Figure 2.27: Workspace with joint limits

the workspace is the area about the highlighted region in Figure 2.27
(much more complicated than the case in Figure 2.26 and close to half
of its workspace).

If there are inverse kinematics solutions for the manipulator (i.e. the
workspace is not empty), there are still a number of interesting ques-
tions to consider. One of them is the question about the number of
possible solutions. To analyze this topic better we will consider two
types of workspace - Reachable and Dextrous workspace.

One and the same point in the manipulator workspace can be reached
via different configurations of the manipulator. "Reachable workspace”
is the set of points that can be reached in at least one configuration of
the manipulator. Conversely "dextrous workspace” is the set of points
that can be reached by any possible orientation of the end-effector. Ob-
viously the dextrous workspace is a subset of the reachable workspace.

Consider the example of three links RRR manipulator in Figure 2.28
with lengths of the links /y > [, > [3. The reachable workspace is
the donut defined by the outside circle (with a center at the base of the
manipulator and a radius [y 4+ > +/3) and the inside circle (with a center
at the base of the manipulator and a radius l; — Iy — [3). On the other
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Figure 2.28: Dextrous workspace example

side the dextrous workspace is the inside unshaded donut with center
at the manipulator base and radius: for the outside circle I; + 15 — I3
and for the inside circle [{ — I3 + I5.

Dextrous workspace is especially important in motion planning with
obstacles when we need to approach and depart from certain positions
with different orientations of the end-effector, or we need to regrasp the
objects in the workspace for transportation.

By definition, in the dextrous workspace there are an infinite number
of solutions for the inverse kinematics problem. However even in the
reachable workspace we can have more than one configuration for the
manipulator reaching a given point. In that case we might want to
be able to choose one of those solutions to work with. This choice is
usually dictated by the rest of the problem setup. If for example we
are trying to move from point A to point B in the workspace in Figure
2.29, we can choose the manipulator configuration for point B that is
more easily and continuously reached from point A. Analytically this
is described by choosing the smaller distance between
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Figure 2.29: Multiplicity of solutions

C1 = |O5,) — O (2.60)

and

Cy = |05, — O (2.61)

Analogously we might prefer to move smaller links or assembly of links
rather than to move large links, and use that as a the criteria for choice
of solution.

The question of number of solutions for classes of manipulators have
been studied heavily in the robotics literature. As a result there are a
number of theoretical results that determine the number of solutions for
particular manipulators. For example it has been shown that for a 6 dof
manipulator with revolute joints for which all link parameters are non
zero , there are 16 possible solutions for the inverse kinematics problem.
If one of the link parameters is zero, we still have 16 solutions to the
inverse kinematics. However if two link parameters are zeroes there are
only 8 solutions, and if three parameters are zeroes we are down to 4
possible solutions. These results are only for the number of solutions
and do not tell us about the range of motion of the manipulator.

We can summarize some of these theoretical results as follows: 6R
manipulators have exactly 16 solutions (some of them might be the
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same), 5RP manipulators have 16 solutions, 4R2P manipulators have
8 solutions, 3R3P manipulators have 2 solutions. Theoretically we can
have 16, 14, 12, ..., 2 possible solutions in general.

For in-parallel structures (which we do not consider in this text) there
are up to 40 possible solutions.

The number of solutions for the Puma robot are illustrated graphically
in Figure 2.30.

Figure 2.30: 8 solutions for a Puma manipulator

There are 4 different manipulator solutions shown in the figure that
achieve the same position and orientation of the end-effector. In ad-
dition we can substitute 8, with 8, — 180° and 45 with —85. Thus we
have 8 possible solutions for that manipulator, for:

05 — 04+ 180° (2.62)

05 — O + 180° (2.64)
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Figure 2.31: 2 solutions for Scheinman arm

For the Stanford Scheinman Arm there are 2 possible configurations for
the manipulator which are depicted in Figure 2.31.

In general a manipulator is considered "solvable” if all possible sets
of solutions can be determined. We need to be able to find all possi-
ble solutions at all possible points with a particular algorithm. It has
been shown that 6 dof open-chain mechanisms are solvable. We can
either find a ”closed-form” solution (an analytical one) or a numerical
solution. The numerical solutions typically involve a certain degree of
approximation and can be achieved by numerous possible approaches.
We will concentrate in this text on closed-form, explicit algebraic solu-
tions to the inverse kinematics problem. These solutions typically exist
for a large class of mechanisms. In addition, almost all robots in prac-
tice are specifically designed so that they have an explicit closed-form
inverse kinematics solution.

There are different sufficient conditions that can guarantee the existence
of closed-form solutions. In this section we described the case when the
manipulator has three intersecting neighboring axes. Pieper and other
researchers have shown that closed-form solutions exist as well when
the intersecting axes are either prismatic or revolute and they can be
anywhere within the kinematic chain.
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Chapter 3

The Jacobian

3.1 Introduction

We have thus so far established the mathematical models for the for-
ward kinematics and inverse kinematics of a manipulator. These models
describe the relationships between the static configurations of a mech-
anism and its end-effector. The focus in this chapter is on the models
associated with the velocities and static forces of articulated mecha-
nisms and the Jacobian matrix which is central to these models.

Assuming the manipulator is at a given configuration, q, let us imagine
that all its joints undertook a set of infinitesimally small displacements,
represented by the vector 6q. At the end effector, there will be a
corresponding set of displacements of the position and orientation x,
represented by the vector 6x. The goal in this chapter is to establish the
relationship between 6x and 6q. By considering the time derivatives of
x and q, this same relationship can be viewed as a relationship between
the velocities x and . The relationship between x and q is described
by the Jacobian matrix. Because of the duality between forces and

77
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velocities, this matrix as we will see later in this chapter is key to the
relationship between joint torques and end effector forces.

3.2 Differential Motion

{n}

Figure 3.1: A Manipulator

Let us consider the function f that maps the space defined by variable
q to the space defined by the variable x. Both q and x are vector
variables (n and m- dimensional resp.), related by

1 fl(Q)

fl/iz _ fz(Q) (3‘1)

As described above we can consider the infinitesimal motion of the
relationship x = f(q). If we write it for each component of x and q
we can derive the following set of equations for éxq,0x,,...,0x,, as
functions of 6¢1,0q2,...,0q,

dfi ofh
b21 = g4+ sy 2
T o0 @+t da. q (3.2)
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o, = —q5q1 + -+ 0qn (3.3)

The above equations can be written in vector form as follows

oh .. 24
I Iqn
bx = | : : | éq (3.4)
Am .. Om
I Iqn

The matrix in the above relationship is called the Jacobian matrix and
is function of q.

J(a) = 4~ (3.5)

In general, the Jacobian allows us to relate corresponding small dis-
placements in different spaces. If we divide both sides of the relation-
ship by small time interval (i.e. differentiate with respect to time) we
obtain a relationship between the velocities of the mechanism in joint
and Cartesian space.

X(mx1) = J (@) mxninx) (3.6)

3.2.1 Example: RR Manipulator

Figure 3.2: A 2 link example
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The Jacobian is a man matrix from its definition. To illustrate the Ja-
cobian, let us consider the following example. Take a two link manipu-
lator in the plane with revolute joints and axis of rotation perpendicular
to the plane of the paper. Let us first derive the positional part of a
Jacobian. First from the forward kinematics we derive the description
of the position and orientation of the end-effector in Cartesian space
with respect to the joint coordinates #; and 6s.

r = llcl + 12012 (37)

y = lisi+lasi (3.8)

The instantaneous motion of the position vector (x,y) is

br = _(1151 + 12512)591 — 13512004 (3.9)
5?} = (1101 + 12012)501 + 12012502 (310)

It we group the coefficients in front of 66, and 66, we obtain a matrix
equation which can be written as

_[éx] _[—v —12512] (591)
ov = [531] B [ € lyers 60, (3'11)
The 222 matrix in the above equation is the Jacobian, J(q).

ox = J(q)éq (3.12)

As we can see this matrix is a function of the vector q = (6, 62).

8z 8z
J = (% %) (3.13)
50, 90,

Now if we consider the differentiation w.r.t. time, we can write the
relationship between x and q.

% = J(q)d (3.14)
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3.2.2 Example: Stanford Scheinman Arm

As another example, we describe below the Jacobian associated with
the end effector position of the Stanford Scheinman arm. The first three
joint variables here are 6, #; and ds. From the forward kinematics we
can observe that the position of the end-effector as a function of 6y, 6,
and ds 1s:

ClSng — 81d2
Xp = 8182d3 + Cldg (315)

C2 d3

If we differentiate with respect to the joint vector (64,8, ds, 04,05, 6s)
we obtain the following Jacobian for the position of the end-effector.

q1

x -y Clczdg C1S89 0 0 0 q.2
%= |y | =2 sieds sis2 00 0[P (3.16)

2 0 —spds ¢ 0 0 0] %

qs

| g6

We defined the position part as x, and the corresponding part of the
Jacobian will be denoted as J,,.
Xp(3><1) = Jp(3x6)(q)q(6><1) (3.17)

For the orientation we will derive a Jacobian associated with the end-
effector orientation representation, x,.

%, = J.(a)d (3.18)

In our example the orientation part is given in terms of direction cosines
(r11,712, - - ., 733). When we differentiate those w.r.t. the joint variables,
we will obtain the Jacobian for this orientation representation.
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ri(q)
x, = | r2(q) (3.19)
rs(q)
: or . dm a1
S o o 0
X, = I‘.Q = % T % (320)
rs (9x1) a—qf e a_qz (9x6) q6

(6x1)

This is a 9 x 6 matrix because we are using the redundant direction
cosines representation for the orientation. As time derivatives the re-
lationship between ¢ and X, (the derivative of the orientation) is de-
scribed by .J, (Jacobian of the orientation). Finally we can put the
position and the orientation part together below.

x, = Jy(q)q (3.21)
J,

X, = J(q)q (3.22)

The above equations can be combined as

()= (i) a 32

We can see that this Jacobian is a 12 x 6 matrix.

X(12x1) = Jo () (12x6)A(6x1) (3.24)

We should also note that so far we have not used any explicit frame in
which we are describing those quantities, i.e. these equations are valid
for any common frame that the variables are described in.

The above matrix is clearly dependent on the end effector representa-
tion. If we have selected a different representation for the orientation
or the position of the end-effector we will obtain a different Jacobian
matrix.
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Typically the position, x, is represented by the three Cartesian coordi-
nates of a point on the end- effector (z,y,z). However we can also use
spherical or cylindrical coordinates for that end-effector point and this
will lead to a different Jacobian J,. The orientation can be also de-
scribed by different sets of parameters - Euler angles, direction cosines,
Euler parameter, equivalent axis parameters, etc.

Depending on the representation used we will have different dimension
of the orientation component of the Jacobian - 3 x n for Fuler angles,
9 x n for direction cosines, 4 x n for Euler parameters or equivalent
axis parameters, where n is the number of degrees of freedom of the
mechanism.

3.3 Basic Jacobian

We will introduce a unique Jacobian that is associated with the motion
of the mechanism.

As we mentioned earlier, the Jacobian we have talked so far about
depends on the representation used for the position and orientation of
the end-effector.

If we use spherical coordinates for the position and direction cosines for
the orientation we will obtain one Jacobian (12 for 6 DOF robot) very
different from the one that results from Cartesian coordinates for the
position and Euler parameters for the orientation (7 x 6 matrix for a 6

DOF robot).

Defined from the differentiation of x = f(q) with respect to g, the
Jacobian is dependent on the representation x of the end-effector po-
sition and orientation. Since the kinematic properties of a mechanism
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are independent of the selected representation, it is important for the
kinematic model to also be representation-independent. The Jacobian
associated with such a model is unique. This Jacobian will be called
the basic Jacobian.

The basic Jacobian matrix establishes the relationships between joint
velocities and the corresponding (uniquely-defined) linear and angular
velocities at a given point on the end-effector.

w

A% .
( ) = Jo(q) 6xn)Y(nx1) (3.25)
(6x1)

Linear velocities are the time derivatives of the Cartesian coordinates
of the end-effector position vector. However this is not the case for
any orientation representation. For example if we take («, 3,7) Euler
angles, their derivatives are not the angular velocities. In fact angular
velocities do not have a primitive function, no representation of the
orientation has derivatives equal to the angular velocities. The angu-
lar velocity is defined as an instantaneous quantity. However, the time
derivative of any representation of the orientation is related to the an-
gular velocity. This is also the case for general position representation.
These relationships are of the form

x, = FEy(x,)v (3.26)
X, = E(x)w (3.27)

Here 2, is the time derivative of the position part of the end-effector
representation and x, is the time derivative of the orientation part. The
matrices F, and E, are only dependent on the particular position or
orientation representation of the end-effector. Using F, and E, we will
be able to obtain the Jacobian for the particular representation as a
function of the basic Jacobian.

3.3.1 Example: E,, £,

As an illustration, if for example we use Cartesian coordinates for the
end-effector position and o —  — ~ Euler angles for the end-effector
orientation
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X, = (:gj) (3.28)
X, = (g) (3.29)
v

0
0) (3.30)
1

St
ET(XT)( co sa 0) (3.31)
8 s U

As mentioned earlier £, is the unit 3 x 3 matrix for that

example.

3.3.2 Relationship: .J, and Jp

The basic Jacobian, Jy, is defined as

() = Hlaa (3.52)

We will denote J, and J, as the linear and angular velocity parts of
this matrix.

v =J,q
{w e (3.33)

Using the definitions of F, and FE, above
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x, = F,v=x%,=(FE,J,)q (3.34)
and

X, = E,w =%, = (EJ.,)q (3.35)

we can derive the following relationships between J, and J, and the
basic Jacobian’s components .J, and .J,,.

{ Jx, = EpJ,

P (3.36)

The above relationships can also be arranged in a matrix form by in-
troducing the matrix Egxe)

(N (E, 0)<Jv)
r=(7)=(¢ &) (3.37)
Using E, the relationship between .J, and the basic Jacobian Jy becomes

J:(q) = E(x)Jo(q) (3.38)

with

v )
() =m0 (3.39)
For the example above
E,=15J,=J, (3.40)

and

P= (é EO) (3.41)
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3.4 Linear/Angular Motion

In this section we further analyze the linear and angular velocities as-
sociated with multi-body systems. Let us consider a point P described
by a position vector p with respect to the origin of a fixed frame {A}.
If the point P is moving with respect to frame {A}, the linear velocity
of the point P with respect to frame {A} is the vector vp 4. As a vec-
tor, the linear velocity can be expressed in any frame - {A}, {B},{C}
with the coordinates AVp/A, BVp/A, OVP/A. The relationships between
these coordinates, involve the rotation transformation matrices intro-
duced earlier. Naturally if the point P is fixed in frame {A}, the linear
velocity vector of P with respect to {A} will be zero.

{B}
{A} VP/A

" B

{C}

Figure 3.3: Linear Velocity

3.4.1 Pure Translation

Let us now consider a pure translation of frame {A} with respect to
another frame {B}. The linear velocity of point P with respect to {B}
is vp/p. If v4/p represents the velocity of the origin of frame {A} with
respect to frame {B}, the two vectors of linear velocities of point P
with respect to {A} and {B} are related by
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Up/B = VA/B T UP/4

{B} Vg

Y

~

Figure 3.4: Pure Translation

3.4.2 Pure Rotation

To analyze the rotation of a rigid body, we need to define a point fixed
in the body and an axis of rotation passing through this point. The
body rotates about this axis and all the points along this axis are fixed
w.r.t. this rotation. This rotation is described by a quantity called
angular velocity, represented by the vector (2.

A point P on the rotating rigid body is moving with a linear velocity
vp, which is dependent on the magnitude of {2 and on the location of
P with respect to the axis of rotation.

Different points on the rigid body will have different linear velocities. If
we select a point O in the body along the axis of rotation the position
vector p measured from O to P will be perpendicular to the linear
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2 Angular Velocity

fixed point

»
-

Figure 3.5: Rotational Motion

velocity vector v,. In addition from mechanics we know that the vector
v, is also perpendicular to the axis of rotation and in particular to
(the angular velocity vector). The magnitude of v, is proportional to
the magnitude of  (the rate of rotation) and to the distance to the axis
of rotation, in other words to the magnitude of psin(¢), as illustrated
in Figure 3.5. Here ¢ is the angle between the axis of rotation and the
position vector p. Thus we can derive the following relationship

vp=QXxp (3.42)

Using the definition of cross product operator, the above vector rela-
tionship can be described in the matrix form as

vp=0xp=vp=0p (3.43)

For instance. let us consider the components of vectors, 2 and p.
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Qs Pe
=19, and p=|p, (3.44)
Q. p-

With the cross product operator, the linear velocity of a point P is

R 0 -, Q, Dar
vp=Qp=| 0 = |py (3.45)
—-Q, Q, 0 P

3.4.3 Cross Product Operator and Rotation Ma-
trix

Consider the rotation matrix between a frame fixed with respect to the
rigid axis and frame moving with the rotated body. The cross product
operator {) can be expressed in terms of this rotation matrix.

€
(A1)
P

Figure 3.6: Rotation and Cross Product

Consider a pure rotation about an axis with an angular velocity €. Let
P be a point fixed in body B. Then the velocity of P in B is zero, i.e.
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VP/B =0 (346)

The representations Pp and “p of the position vector p in frames {A}
and {B} are related by the rotation matrix 4R

Ap = 4RPp (3.47)
Let us differentiate w.r.t. time the above relationship
“p=5hp + 5R"D

Noting that the second term is equal to zero (since vp/g = 0), the
relationship becomes

= Aty

Transforming Zp to 4p by premultiplication of 4 RT4R = I, yields
o= B Pp- ARG P (345)
b = BRER'(3R°p) = (3R5R")"p (3.49)

The above relationship can be written in vector form for any rotating
frame

p=RRTp (3.50)

Observing that p is linear velocity of vp, we obtain

Q= RR" (3.51)
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3.4.4 Example: Rotation about axis Z

Consider the rotation of frame about the axis Z of a fixed frame. Mea-
sured by the angle 8, the corresponding rotation matrix is

c) —s0 0
R=1s8 ¢ 0 (3.52)
0 0 1

The derivative w.r.t. time is

‘ —5Q9 —0(9(9: 0
R = chd  —s00 0 (3.53)
0 0 0
or
] 0 =00
RR' =16 0 0 (3.54)
0 0 0

0
0= (o) (3.55)
f

(0 =00
Q=16 0 0 (3.56)
0 0 0

Thus the relationship above is verified.

and we can verify that

Q= RRT (3.57)
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3.5 Combined Linear and Angular Motion

Now we consider motions involving both linear and angular velocities,
as illustrated in Figure 3.7.

Figure 3.7: Linear and Angular Motion

The corresponding relationship is:

Vpa = Vea+Vpp+Q X pp (3.58)

In order to perform this addition we need to have all quantities ex-
pressed in the same reference frame. In frame {A} the equation is

Avpia = Ve + 5RPvpp + 405 x §RPpp (3.59)

3.6 Jacobian: Velocity Propagation

When we have several rigid bodies connected in a mechanism, we need
to propagate the velocities from frame {0} to frame {n}.
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Figure 3.8: A Spatial Mechanism

The linear and angular velocity at the end-effector can be computed
by propagation of velocities through the links of the manipulator. By
computing and propagating linear and angular velocities from the fixed
base to the end-effector, we establish the relationship between joint
velocities and end- effector velocities. This provides an iterative method
to compute the Basic Jacobian.

Consider two consecutive links 7 and 7 + 1.

{I} Z {|+ 1} i1

Figure 3.9: Velocity Propagation

The angular velocity of link z+1 is equal to the angular velocity of link
¢ plus the local rotation of link ¢ 4+ 1 represented by €.
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Wit1 = Wy + Qi-l—l (360)

This local rotation is simply given by the derivative (9'24_1 of the angle
of rotation of the link along the axis of rotation z;;;.

Qi—l—l = 0‘2'+1ZZ'_|_1 (361)

For the linear velocity the expression is slightly more complicated. The
linear velocity at link ¢ + 1 is equal to the one at link ¢ plus the contri-
bution of the angular velocity of link ¢ (w; X p;41) plus the contribution
of the local linear velocity associated with a prismatic joint (this is
di+lzz’+1) if joint 72 + 1 was prismatic.

Vigl = Vi + W X Piy1 + dH—IZH—l (3.62)

It we use these equations we can propagate them from the beginning
to the end of the chain. If the computation of velocities is done in the
local frame, the result will be obtained in frame n. The end-effector
linear and angular velocities in the base frame are

% R 0 "
<0w) B ( 0 21%) (”w) (3.63)
The above expressions are linear functions of q, from which the basic
Jacobian can be extracted. This iterative procedure is suitable for
numerical computations of the Jacobian. The procedure, however, does
not provide a description of the special structure of the Jacobian matrix.

The next section addresses this aspect and presents a method for an
explicit form of the Jacobian.

3.7 Jacobian: Explicit Form

Consider a general mechanism and let us examine how the velocities at
the joints affect the linear and angular velocities at the end effector.
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TN

Figure 3.10: Explicit Form of the Jacobian

The velocity of a link with respect to the proceeding link is dependent
on the type of joint that connects them. If the joint is a prismatic one,
then the link linear velocity with respect to the previous link is along
the prismatic joint axis, z; with a magnitude of ¢;.

Vv, = Zz% (364)

Similarly for a revolute joint the angular velocity is about the revolute
joint axis with a magnitude of ¢;.

The local velocity at each joint contributes to the end effector velocities.
A revolute joint creates both an angular rotation at the end-effector and
a linear velocity. The linear velocity depends on the distance between
the end-effector point and the joint axis. It involves the cross product
of €, with the vector locating this point. The angular velocity, €,
is transfered down the chain to the end-effector. A prismatic joint j
creates only a linear velocity v; that gets transfered down to the end-
effector.

The total contribution of joint velocities of the mechanism to the end
effector linear velocity is therefore
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VvV = Zn: [62'1)2' + EZ(QZ X pm)] (366)

=1

Similarly the end effector angular velocity is the sum

W = Z EiQi (367)

Substituting the expressions of v; and ); from equations 3.64 and 3.65,
we obtain

n

VvV = Z [QZZ' + EZ'(ZZ' X pm)]% (368)

=1
w = Z EiZiQi (369)
=1

The end-effector velocity is:

v = (121 + €1(21 X P1n))1 + (€222 + €(22 X P2,))d2a+ -+ (3.70)
or
Q1
_ _ q
v =[(a1z1 + @(zy X P1n)) (222 + E(22 X pa)) -+ |~ | (3.71)
qn

and it can be written as:

v =J,4 (3.72)
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where J, is the linear motion Jacobian. Similarly the end-effector an-
gular velocity is:

W = Elzlq'l + EQZQq‘Q + -4 Enznqn (373)
or
7
_ _ _ 2
aJ::[elzl €Zoy v GnZn]. . (3.74)
qn

and it can be written as:

w=J,q (3.75)

where J, is the angular motion Jacobian. Combining the linear and
angular motion parts leads to the basic Jacobian

{V:Lq}e(v)zjq (3.76)

w=J,q w
or
J
J:<v) 3.77
” 3.1
The equations provide the expressions for the matrices J, and J,. The
derivation of the matrix J, involves new quantities pi,,P2n,-- -, Pan

that need to be computed.

A simple approach to compute J, is to use the direct differentiation of
the Cartesian coordinates of the point on the end-effector

. al’P. al’p. 6:1;p,
v = y —XP—a—qlﬁ—Fa—qz%—l- +0—%qn

dx dx dx . .
vo= (2 2o Zehg= g (3.79)

(3.78)
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For J, all that we need is to compute the z—vectors associated with
revolute joints. Overall the Jacobian takes the form

dzp  dzp .., Ozp
J = 78‘11 78‘]2 78‘]71 (380)
€1Z1 €37 €nZy

Note that ¢ is zero for a revolute joint and one for a prismatic one. To

express the Jacobian in particular frame, all we need is to have all the
quantities expressed in that frame.

aol’p aol’p . aol’p
OJ = g g2 Iqn
%21 &%z, - &'z,

(3.81)

The components of °z; can be found as °z; ‘R'z; (‘z; is of course

(0 0 1)). Thus all we need for the angular motion Jacobian is the
last column of the rotation matrix.

X X 0
X X 0 (3.82)
X X 1

2, = Rz

(3.83)

0
z = (o) (3.84)
1

The overall Jacobian is then found as:

with

a(Rz) &Rz - &(0Ra)

OJ:(;;%) Z(Oxp) - —<>) (3.85)
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3.7.1 Example: Stanford Scheinman Arm

CHAPTER 3. THE JACOBIAN

As we have shown previously, we first introduce frames, define the

D&H parameters and calculate the D&H table.

the transformation matrices, namely:

_06

O = O O

5]

0

O = O O

o O = O

o = O O

o O = O

_ o O O

jam)

e =
— o oo — o S

_ o o o

Then we calculate

(3.86)

(3.87)

(3.88)

(3.89)

(3.90)

(3.91)

Next we express each of the frames w.r.t. the {0} frame, i.e. we calcu-

late the transformation matrices:
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C1Co —C1S52 —3S51 —Sldg
o _ | S1€2 —S152 5] cidy
A=\ 20 ) 0 (3.92)
0 0 0 1
cicy  —s1 €15y C1ds3sy — s1dy
o | S1€2 a1 s182 S1dssy 4 cids
=10 0 e, (3.93)
0 0 0 1
C1C2C4 — S184 —C1C284 — S1C4 €152 Cld382 — 81d2
o | S1C2ca+ 184 —s1ca84 + creq 518y S1d3sy + cidy
4T B —S5254 S2C4 Co dscy (3'94)
0 0 0 1
X X —C1C284 — S51C4 Cld382 — 81d2
X X  —si¢384 +cicq4 S1d3sy + cqd
o __ 16254 1C4 10352 102
T=v x s e, (3.95)
0 0 0 1
X X C1€C2C4S5 — 515455 + C15285 Cld382 — 81d2
X X 8163C485 4+ €15455 + $18955  S1d3s. + cqd
o __ 1C2€4 35 15455 15255 10352 102
6T - X X —S892C4 S5 + C5Co d3€2 (396)
0 0 0 1

As we can see the origin of frame {3} is the same as the one for {4}, {5}
and {6}. All we need to keep for the computation of the orientation is
just the third column of the transformation matrices. Now we can fill
the 6 x 6 Jacobian in this case using the information above.

dep dzp  dzp ) 0 0
J = Iq1 g2 Jqs3 3.97
£ I S BT

As we can see the 3 x 1 representation of the third orientation vector
is 0 (since it is a prismatic link). Similarly, we easily fill the rest of
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the matrix as a function of %z, %z,, ...

.,%z¢ and
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dxp Ozp OJzp Th
Ay Ay A ese
9g1 7 9927 Ogs

expressions can be easily calculated using the transforms we calculated

before. The Jacobian, J, is

_—Cldz — 8182d3 61€2d3 €189 0 0 0
—81d2 + 6182d3 81€2d3 8189 0 0 0
0 —82d3 C9 0 0 0
0 —381 0 €189 —C1C284 — 51C4 C€C1€C3C485 — 818455 + C15955
0 1 0 8182 —810284 + 104 81020485 + 18485 + $18285
L 1 0 0 Cy 89854 — 89485 + C5C2

Of course all quantities in this matrix are expressed in frame 0. Note
that the horizontal dimension of the basic Jacobian depends on the
number of DOF of the mechanism, while the vertical one is six (3 for
the position and 3 for the orientation).

3.7.2 Jacobian in a Different Frame

As we mentioned above, we may want to express the Jacobian in dif-
ferent frames. The transformation matrix between two frames is

BR 0
BJ:<A )AJ
0 ER

In practice the best frame to compute the Jacobian is in the middle
of the chain because that makes the expressions of the elements of the
Jacobian least complicated. Moving to frame {0} can be done using

(3.98)

the above transformation.

3.8 Kinematic Singularities

The work space of a manipulator generally contains a number of par-
ticular configurations that locally limits the end-effector mobility. Such
configurations are called singular configurations. At a singular configu-
ration, the end-effector locally loses the ability to move along or rotate
about some direction in Cartesian space.
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Note that these singularities are related to the kinematics of the ma-
nipulator and are obviously different from the singularities of the repre-
sentation we have discussed earlier, which uniquely arise from the type
of the selected representation.

For example the kinematic singularities for a 2 DOF revolute arm (see
Figure 3.11) are the configurations where the two links are collinear.
The end-effector cannot move along the common link direction.

Another example of singularity is the wrist singularity, which is common
for the Stanford Scheinman Arm and the PUMA. This is the config-
uration when axis 4 and axis 6 are collinear, the end effector cannot
rotate about the normal to the plane defined by axes 4 and 5.

In such configurations, instantaneously the end effector cannot rotate
about that axis. In other words even though we can vary the joint
velocities, the resulting linear or angular velocity at the end effector will
be zero. Since the Jacobian is the mapping between these velocities, the
analysis of kinematic singularities is closely connected to the Jacobian.

At a singular configuration, some columns of the Jacobian matrix be-
come linearly dependent and the Jacobian losses rank. The phenomenon
of singularity can then be studied by checking the determinant of the
Jacobian, which is zero at singular configurations.

det[J(q)] = 0 (3.99)

Consider again the example of the 2 DOF revolute manipulator illus-
trated in Figure 3.11.

From simple geometric considerations we derive the coordinates of the
end-effector point.

T = llcl + 12012 (3100)

y = [151 + l2512 (3.101)

This leads to the Jacobian
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Figure 3.11: 2 DOF Example

0 = <_y _12512) (3.102)

&€ 12012

We now express the Jacobian in frame {1} to further simplify its ex-
pression.

Ly = (IJROJ
with
op_ (&1 —51
OR — (31 ; ) (3.103)
Thus:
17 _ —1l359 —1252)
/= <l1 + s ey (3.104)

The above expressions show how the manipulator approaches a singu-
larity as the angle 5 goes to zero. When s3 = 0 the first row becomes

(0 0) and the rank of the Jacobian is 1.

0 0
1y ( ) 3.105
L+ ( )
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Note that the determinant of the Jacobian does not depend on the
frame where the matrix is defined.

BR 0

det[BJ] = det
"] 0 AR

det[*J] (3.106)

Consider a small joint displacement (661, 602) from the singular configu-
ration. The corresponding end effector displacement (éx, 6y) expressed
in frame 1 is

e B 0 0 06,
() = (v o) Gsor) (3.107)
Thus:
Lse =0 (3.108)
and

3.9 Jacobian at Wrist/End-Effector

The point at the end effector, where linear and angular velocities are
evaluated, varies with the robot’s task, grasped object, or tools. Each
selection of the end-effector point corresponds to a different Jacobian.
The simplest Jacobian corresponds to the wrist point. The wrist point
is fixed with respect to the end effector and the Jacobian for any other
point can be computed from the wrist Jacobian.

Consider a point E at the end effector located with respect to the wrist
point (origin of frame {n}) by a vector p,.. The linear velocity, v. at
point E is

Ve =V + Wy X Pre (3.110)



106 CHAPTER 3. THE JACOBIAN

Figure 3.12: Jacobian at the End-effector

Since the angular velocity is the same at both points (E being fixed
with respect to W), we have

{Ve:vn_pm n (3.111)
We = Wy,
Replacing p,.x by the cross product operator p,. yields

_og
0, — (é }’”) 0, (3.112)

3.9.1 Example: 3 DOF RRR Arm

Let us consider the 3 DOF revolute planar mechanism shown in Fig-

ure 3.13.

The position coordinates of the end-effector wrist point are

Tw = llcl + 12012 (3113)
yw = 81+ las1z (3.114)
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Figure 3.13: 3 DOF Example

at the end-effector point is:

g = licp + Lo + [scias

ye = 281 4 l2812 + [35193

The Jacobian in frame {0} for the wrist point is

_—1151 - 12812 —12512 0
licr + lheo laer2 0
0 0 0
Jw = 0 0 0
0 0 0
i 1 1 1]

107

(3.115)
(3.116)

(3.117)

To get the Jacobian at the end-effector we will use vector pywg in frame

{0}:

I -
o7 WE \ o
Jg = (0 I ) Jw

Thus the cross product operator is

(3.118)
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130123 0 0 135123
‘pwr = | sz | = "pwr = 0 0 —Il5¢123 (3.119)
0

—135123 130123 0

The Jacobian at point E is

(3.121)

—135123 —135123 —135123
0 0 0

—OIA)WEOJW(W) = ( l3¢193 l3¢193 l3c123

It we perform the multiplications we obtain the following 3 columns
for the Jacobian associated with the linear velocity and the overall
Jacobian follows.

_—1151 - 12512 - 135123 —12512 - 135123 —135123_
lier + lzerz + I3c193 lac1a + l3¢193 l3¢123
0, 0 0 0
Jg = 0 0 0 (3.122)
0 0 0
I 1 1 I

We can verify these results using the time derivatives of (x,y,z) as
before.

3.10 Static Forces

Another application of the Jacobian is to define the relationship be-
tween forces applied at the end-effector and torques needed at the joints
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to support these forces. We described the relationship between linear
velocities and angular velocities at the end effector and the joint veloc-
ities. Here we consider the relationship between end-effector forces and
moments as related to joint torques. We will denote by f and n the
static force and moment applied by the end-effector to the environment.
T1,T2,..., T, are the torques needed at the joints of the manipulator to
produce f and n.

3.10.1 Force Propagation

Figure 3.14: Static Forces

One way to establish this relationship is through propagation of the
forces along the kinematic chain, similar to the velocity propagation
from link to link. In fact as we will see later in considering the dynamics
of the manipulator, velocities are propagated up the kinematic chain
after which forces are propagated back in the opposite direction. As
we propagate we can eliminate internal forces that are supported by
the structure. This is done by projecting all forces at the joints. To
analyze the static forces, let us imagine that we isolate the links of the
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manipulator into components, which can be treated as separate rigid

bodies.

ALY

Figure 3.15: Force and Moments Cancelation

For each rigid body, we will consider all forces and moments that act
on it and will then set the conditions for bring it to equilibrium. Let
us consider the rigid body ¢ (link i). In order for this rigid body to be
at equilibrium, the sum of all forces and moments with respect to any
point on the rigid body must be equal to zero. For link ¢, we have

fi4 (—fip1) =0 (3.123)

We select the origin of frame {¢} for the moment computation. This
leads to the equation

n; + (—Mip1) + pist X (—Fip1) =0 (3.124)

The above two relationships can be written recursively as follows:

f; =i (3.125)
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Figure 3.16: Link Equilibrium

n;, =n;.q + Pir1 X fi-l—l (3126)

We need to guarantee that we eliminate in these equations the compo-
nents that will be transmitted to the ground through the structure of
the mechanism. We will do that by projecting the equations along the
joint axis and propagating these relationships along the kinematic chain
from the end-effector to the ground. These relationships are as follows:

For a prismatic joint 7, = fZ»TZZ' and for a revolute joint 7; = n?zi.

For link {n}

g, ="f (3.127)
"n,="n+"pu1 x"f (3.128)

and for link ¢
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of =t R (3.129)
n;, = §+1Ri+1ni+1 + ip¢+1 x 'f; (3.130)

7

This iterative process leads to a linear relationship between end-effector
forces and moments and joint torques. The analysis of this relationship
shows that it is simply the transpose of the Jacobian matrix.

r=J'F

where F' is the vector combining end-effector forces and moments. The
above relationship is the dual of the relationship we have established
earlier between the end-effector linear angular velocities and joint ve-
locities.

Earlier we derived similar equations for propagating angular and linear
velocities along the links. These equations are

H_le_l == H_lRiiwi + 9i+1i+1zi+1 (3131)
i+1Vi+1 = Z'-l_le'-|-1 (iVi + W ip¢+1) + di+1i+lzi+1 (3.132)

Starting from the first fixed link, we can propagate to find the velocities
at the end-effector, and then extract the Jacobian matrix.

3.10.2 Example: 3 DOF RRR Arm

Let us illustrate this method on the 3 DOF revolute manipulator we
have been using in this Chapter.

For the linear velocity we obtain:

vp = 0 (3.133)
Vp, = Vp + wq X P2 (3134)

2

Vp, = Vp, + wy X P3 (3135)

3
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or
0 —91 0 llcl —1181 .
OVP2 =0 + 01 0 0 1181 = llcl 01 (3136)
0 0 0 0 0
and
i —1181 i . _0 —1 0 . .
OVP3 = llcl 01 + 1 0 0 (01 + 92)0p3 (3137)
0| 0 0 0
_—1181_ . _—12512 . .
OVP3 = llcl 01 + 12012 (01 + 02) (3138)
0 0

The angular velocities are simple since they are all rotations about the
7. axis perpendicular to the plane of the paper.

0(4)3 = (01 + 92 + ég)OZO (3139)
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In matrix form

—(hs1 4+ l3s12) —las12 0 (9:1

OVP3 = llcl + 12012 12012 0 QQ (3140)
0 0 0] ]6s
and
0 0 0][6
%ws=10 0 0] |0, (3.141)
11 1 5

from which we obtain the Jacobian:

0,
(w) —J (zz> (3.142)

This Jacobian is clearly the same as previously calculated using the
explicit method.

3.10.3 Virtual Work

The relationship between end-effector forces and joint torques can be
directly established using the wvirtual work principle. This principal
states that at static equilibrium the virtual work of all applied forces is
equal to zero.

The virtual work principal allows to avoid computing and eliminating
internal forces. Since internal forces do not produce any work, they are
not involved in the analysis.

Joint torques and end-effector forces are the only applied or active forces
for this mechanism. Let F be the vector of applied forces and moments
at the end effector,

F— (f) (3.143)
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At static equilibrium, the virtual work is

Toq+ (—F)léx =0 (3.144)

Note that the minus sign is due to the fact that forces at the end effector
are applied by the environment to the end-effector.

Using the relationship
ox = Jéq

yields

r=JF (3.145)

This is an important relationship not only for the the analysis of static
forces but also for robot control.

3.11 More on Explicit Form: J,

We have seen how the linear motion Jacobian, J,, can be obtained from
direct differentiations of the end-effector position vector. We develop
here the explicit form for obtaining this matrix. The expression for the
linear velocity was found in the form

v = Z [QZZ' + EZ'(ZZ' X pm)]% (3146)
=1

v = [az1+ a(z1 X pia)]g1 + [€222 + €(22 X Pan)]d2 +
o+ [€nZn + €(Zn X Prn)]dn (3.147)

and the corresponding Jacobian is

Jv — [61Z1 + El(Zl X pln) crt €pZp + En(zn X pnn) ] q (3148)
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In this form, .J, is expressed in terms of the z; vectors and p;, vectors
associated with the various links. Combining the linear and angular
parts, the Jacobian J is

(6121 + €121 X P1n) - (€4—1Zue1 + €m1Zpy X P(n—l)n) €n%n
€121 e €n—1Zn—1 €nZn
(3.149)

To express this matrix in a given frame, all vectors should be evaluated
in that frame. The cross product (z; X p;,) can be evaluated in frame
{1}. Again, since the components in {i} of z; are independent of frame

{1}, we define

o 0 —1 0
Z="z=|1 0 0
0 0 0

The components in frame {7} of cross product vectors (z; X p;,) are
simply (7 "Pin)-

The components in the frame {i} of the vector p;, are given in the last
column of the transformation 7.

The expression in frame {0} of the Jacobian matrix, °.J is given by

?R(GIZ + Elglpln) Tt 2_1R(6n—1Z + En—lZn_lp(n—l)n) gRenZ
‘Re, 7 e O \Ré, 17 Re. 7z
(3.150)

3.11.1 Stanford Scheinman arm example

Applying the explicit form of J, to the Stanford Scheinman arm, we
can easily (by setting the numerical values of ¢;) write the Jacobian as

0 0 0
o7 ((z1 xp13) °(z2xXpa) "z3 0 0 0 )
J = ( OZI OZ2 0 0Z4 ()Z5 0Z6 (3151)
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P13 is given in 37" in frame {1}

Co 0 S9 d382
IR p 0 1 0 d
1 _ 3 13 _ 2
3T - (0 0 0 1 ) - — S92 0 Co d3€2 (3152)
0 0 0 1
To express (z; X p13) in frame {0}, we have
O(Zl X p13) = ?R.(lzl X 1p13) (3153)

The computation of 'z; x ‘P;, in frame {i} is simply

' ' 0 -1 0 Pz —py
(‘zzx'p)=11 0 0 P, | =] Ps (3.154)
0 0 0/ \p. 0

For 'z; x 'Pys, this computation is

d382
'pis=| dy (3.155)

d3€2
and
_d2
1Z1 X 1p13 = d382 (3156)
0

In frame {0} this is

(8] S1 0 —dg —Cldz - 8182d3

?R(lzl X 11313) =15 a 0 dssy | = | —s1ds + c152d3
0 0 1 0 0

(3.157)
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For %(z2 X pas), we can similarly obtain

0 1 0 0 0
0 0 —1 —d
pas = {d:a — 3T = 01 o0 ’ (3.158)
0 0 0 0 1
and
ds
2y X a3 = | 0 (3.159)
0
Since
C1C2 X X
gR = | sicg X X (3.160)
— S92 X X
we obtain
Clczdg
SR(*zy X *pas) = | si1cads (3.161)
—59ds

Finally z3 in frame {0} is

0 C1S52
0Z3 =< gR 0 = 5152 (3162)
1 Co

The Jacobian in frame {0} is, as expected, the same as the one derived
earlier:
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_—Cldz — 8182d3 61€2d3 €189 0 0 0
—81d2 + 6182d3 81€2d3 8189 0 0 0
0 —82d3 C9 0 0 0
0 —381 0 €189 —C1C284 — 51C4 C€C1€C3C485 — 818455 + C15955
0 1 0 8182 —810284 + 104 81020485 + 18485 + $18285
L 1 0 0 Cy 89854 — 89485 + C5C2

There is yet another approach to compute the vectors p;,, this is dis-
cussed in the next section.

3.11.2 p;, Derivation

Figure 3.18: Computing p;,

The computation in frame {z} of the vector p;, requires ¢ T'. However,
this transformation is often not explicitly available, as only the ma-
trices: 97, 97, ..., 9T, ..., T are computed. In this case, it is more
efficient to express p;, as

Pin = Xp — Po:-

The vector x, and py; are expressed in frame {0}, °py; is given in 7.
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The computation of (?R Z 'Pin) that appears in (3.150) can then be
replaced by

CRZ'pw) = (RZIR") (°x,—"po).



Chapter 4

Dynamics

4.1 Introduction

The study of manipulator dynamics is essential for both the analysis of
performance and the design of robot control. A manipulator is a multi-
link, highly nonlinear and coupled mechanical system. In motion, this
system is subjected to inertial, centrifugal, Coriolis, and gravity forces,
which can greatly affect its performance in the execution of a task. If
ignored, these dynamics may also lead to control instability, especially
for tasks that involve contact interactions with the environment. Our
goal here is to model the dynamics and establish the manipulator equa-
tion of motion in order to develop the appropriate control structures
needed to achieve robot’s stability and performance.

There are various formulations for modeling the dynamics of manipula-
tors. We will discuss a recursive algorithm based on the Newton-Euler
formulation, and present an approach for the explicit model, based on
Lagrange’s formulation. These two methodologies are similar to the re-
cursive and explicit approaches we presented earlier for the kinematic
model and the Jacobian matrix.

In the Newton-Euler method, the analysis is based on isolating each link
and considering all the forces acting on it. This analysis is similar to the
previous study of static forces, which lead to the relationship between

121
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Figure 4.1: Link’s Dynamics

end-effector forces and joint torques, i.e. 7 = JTF. The difference with
the previous analysis is that now we must account for the inertial forces
acting on the manipulator links.

For link ¢, we consider the forces f; and f;;11, and the moments n; and
n;11 acting at joints ¢ and ¢ + 1. Because of the motion of the link, we
must include the inertial forces associated with this motion. Let F; and
N; be the inertial forces corresponding to the linear motion and angular
motion respectively, expressed at the center of mass of the link. These
dynamic forces are given by the equations of Newton (linear motion)
and Euler (angular motion),

O’](,UZ + w; X Oi]wi = NZ (42)

where m; and ©¢I are the mass and link’s tensor of inertia at the center
of mass.

Similarly to the static analysis we have seen, recursive force and mo-
ment relationships can be developed, and internal forces and moments
can be eliminated by projection on the joint axis,
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(4.3)

o { n’'Z; for a revolute joint
' LT Z; for a prismatic joint

The Newton-Euler algorithm consists of two propagation phases. A for-
ward propagation of velocities, accelerations, and dynamic forces. Back-
ward propagation then eliminates internal forces and moments. Internal
forces are transmitted through the structure.

Lagrange’s formulation relies on the concept of energy, the kinetic en-
ergy K and the potential energy U of the system. The kinetic energy
is expressed in terms of the manipulator mass matrix M and the gen-
eralized velocities q in the following quadratic form,

1
K = 5qTMq (4.4)

Given the potential energy V', the Lagrangian is

L=K-V (4.5)
and Lagrange’s equations of motion are

d oL oL

dt(aq) Jq ! (46)
where 7 is the vector of applied generalized torques. Both formalisms,
Newton-Euler and Lagrange. leads to the same set of equations, which

can be developed in the form

Ma+v+g=r (4.7)

where g is the vector of gravity forces and v is the vector of centrifugal
and Coriolis forces. These equations provides the relationship between
torques applied to the manipulator and the resulting accelerations and
velocities.

Analysis of Lagrange’s equations shows that the coefficients involved
in v can be obtained from M. This reduces the problem to finding M
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and g. The mass matrix M can be directly found from the total kinetic
energy of the mechanism, and g can be determined simply from static
analysis. This provides an explicit form of the equation of motion.

4.2 Newton-Euler Formulation

Newton’s equation provides a description of the linear motion. Euler’s
equation, which describes the angular motion, involves the notion of
angular momentum and the link’s inertia tensor.

4.2.1 Linear and Angular Momentum

F .
\ m__-2a particle
\a

OI v
inertial

Frame

Figure 4.2: A particle’s dynamics

Let us start with a simple particle. The kinetic energy of a particle
with a velocity v is 1/2mv?. Newton’s law gives us the equation for
the acceleration of the particle a with respect to an inertial frame, given
an applied force F
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This equation can be also written in terms of the linear momentum,
mv of this particle. The rate of change of the linear momentum is equal
to the applied forces,

S(mv)=F (4.8)

0

Figure 4.3: Angular Momentum Computation

To introduce the angular momentum, we take the moment of the forces
that appear on both sides of the above equation. The moment N of
F with respect to some point O is the cross product of the vector p
locating the particle and the vector F'. Taking the moment with respect
to the same point of the left hand side of the equation yields

pxmv=pxF=N (4.9)
Let us consider the rate of change of the quantity p x mv,

d
E(pva):pXm\'f—l—VXmV:pXm\'f (4.10)

This yields
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%(p xmv)=N (4.11)

The quantity p x mv is the angular momentum with respect to O of
the particle. Thus the rate of change of the angular momentum is equal

to the applied moment. This equation complements the one above for
the rate of change of the linear momentum and the applied forces.

4.2.2 Euler Equation

To develop Euler’s equations, we must extend our previous result to the
rigid body case. A rigid body can be treated as a large set of particles,
and the previous analysis can be extended to the sum over this set.

Figure 4.4: Rigid body rotational motion

Let us consider the angular motion of a rigid body rotating with respect
to some fixed point O at an angular velocity w. The linear velocity, v;,
of a particle ¢ of this rigid body is w x p;. where p; is the position
vector for the particle with respect to O. The angular momentum, &,
of the rigid body — the sum of the angular momentums of all particles
—is
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o = ZmZpZ X (w X pZ) (412)

Let us assume that the mass density of the rigid body is p. The mass m;
can be approximated by the product of the density of the rigid body p
by a small volume dv occupied by a particle. Integrating over the rigid
body’s volume, V, we obtain

o = /p % (w % p)pdv (4.13)

Observing that w is independent of the variable in this integral, and
replacing px by the cross product operator p, yields

o= / _pppdv]w (4.14)

The quantity in brackets is called the inertia tensor of the rigid body,
1, hence

1 =[] ~pbpdv]
v
Finally, the angular momentum of this rigid body is

O = Iuw (4.15)

Euler’s equations for the rotational motion with respect to some point
O state that the rate of change of the angular momentum of the rigid
body is equal to the applied moments

db=Jluo+twxlw=N (4.16)

Together with Newton’s law, these equations provide the description of
the linear and angular motions for a manipulator, subjected to external
forces.
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4.2.3 Inertia Tensor

The inertia tensor I is defined by
1= [ —pppdv
“
The quantity —pp can be computed as

(-pp) = (p"P) s — pp’

The inertia tensor is therefore

I :/[(pr)]3 — pp’pdv

(4.17)

(4.18)

(4.19)

Let us consider a Cartesian representation for the position vector p,

x
P=1¥
z
The term in the integral is
y2 + 22 -y —xz
[(p"p)s—pp'l=| —ay +a? —yz
—xz —Yyz % 4 y2

The inertia tensor [ is represented by the matrix

]xac _]acy _]acz
I'=|—-ILy Iy —1Iy.
_]acz _]yz ]ZZ

where

(4.20)

(4.21)

(4.22)
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L, = /// (y* + 2°)pdadydz (4.23)
I, = /// (22 + xz)pdxdydz (4.24)
I.= /// (2% + y*)pdadydz (4.25)

Iy = /// xypdrdydz (4.26)

— /// xzpdrdydz (4.27)

I, = /// yzpdxdydz (4.28)

Iy, 1y, and I, are called the moments of inertia and 1, I,. and I, are
called products of inertia. When the matrix [ is diagonal, the diagonal
moments of inertia are called the principal moments of inertia.

Parallel Axis Theorem

Because of the symmetries generally found in rigid bodies, it is more
efficient to compute the body’s inertia tensor with respect to its center
of mass. If needed with respect to another point and axes, the inertia
tensor can be obtained from the tensor computed at the center of mass
through a translation and rotation transformation, determined by the
parallel axis theorem.

Assuming the the inertia tensor has been computed with respect to the
frame {C} (at the body’s center of mass), to find the inertia tensor
with respect to another frame {A}, whose axes are parallel to those of
{C}, we can proceed as follows.

Let pe be the vector locating point C in frame {A}. The parallel axis
theorem states:
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QY. / '\;@\
P, \ (=

Ye
zZ

[

Figure 4.5: Parallel Axis Theorem

A =T+ m[(pipc)ls — pepd] (4.29)

If (2, ye, 2c) are the Cartesian coordinates of point C in frame {A}, the
relationships between the two tensors are

AL, =YL, +m(2% +y2) (4.30)

A]l,y = C]l,y + macyo (4.31)

Rotation Transformation Let us consider the case where we wish
to express the inertia tensor with respect to another frame rotated with
respect to the rigid body frame. The angular momentum expressed in

frame {A} is

A9 =414

Let’s express this quantity in a frame {B}, having the same origin as
{A} and obtained by a rotation £ R,

Po = TR0 = TR MW
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where
Ay = gRBw — BRTB,
thus
B = BRAI(ER" Pu)
also
B = Br B,
finally

o1 R

The relationship described above is a similarity transformation. For a
general frame transformation involving both translation and rotation.
We first proceed with a translation using the parallel axis theorem, and
then apply the similarity transformation for the rotation.

4.3 Lagrange Formulation

Given a set of generalized coordinates, q, describing the configuration
of a mechanism, there is a set of corresponding generalized forces, T,
acting along (or about) each of these coordinates. If the coordinate ¢;
represents the rotation of a revolute joint, the corresponding force 7;
would be a torque acting about the joint axis. For a prismatic joint, 7;
is a force acting along the axis of the joint.

Lagrange’s equations involve a scalar quantity L, the Lagrangian, which
represents the difference between the two scalars corresponding to the
kinetic energy K and the potential energy V' of the mechanism,

L=K-V (4.32)



132 CHAPTER 4. DYNAMICS

The Lagrangian, L is a function, of the generalized coordinates q and
the generalized velocities, q.

L=1L(q,q)

. For an n DOF mechanism, the Lagrange formulation provides the n
equations of motion in the following from

d oL aL

(= 2= 4.33
7 aq) 9q T (4.33)
Since the potential energy (due to the gravity) is only dependent on

the configuration, these equations can be written as

d 0K oK oU

() - = 4.34
dt( 8q) Jq + dq ! ( )
The first two terms define the inertial forces associated with the motion
of the mechanism, and the third term represents the gradient of the

gravity potential acting on it. This gradient is the gravity force vector.

For a single mass m with a velocity v, the kinetic energy is 1/2(vImuo).
In the case of a multi-link manipulator with a mass matrix M and
generalized velocities, q, the kinetic energy is the scalar given by the
quadratic form

1
K = 5qTMq (4.35)

Using this expression of K we can write

oK 9

o = selGal M) = Mg (1.36)

2
Differentiating with respect to time we obtain:

d 0K
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The inertial forces in the equation of Lagrange can be expressed as

.TM.

q 3,4
d 0K 0K . "
KLU VR R B (4.35)
dt" 0q dq A
a 3,,.4
This equation can be developed in the form
d 0K, 0K
() - = = M6 , 4.39
il oq) " aq ~ Matvlad (4.39)
where v is the vector of centrifugal and Coriolis forces given by
[
vig.q)=Ma-5| (4.40)
q"' 504

Finally adding the inertial and gravity terms in the Lagrange equations,
yields

M(q)q+v(q,q) +g(q) =7 (4.41)

The vector of centrifugal and Coriolis forces can be expressed as
v(a, @) = C(q)[q7] + B(a)l4d] (4.42)

4.3.1 Explicit Form of the Mass Matrix

The mass matrix M plays a central role in the dynamics of manipulator.
In particular, the elements of the matrices B and C can be completely
determined from this matrix.

Because of its additive property, the kinetic energy of the total system
is the sum of the kinetic energies associated with its links.
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Figure 4.6: Explicit Form

K=> K, (4.43)
=1

The kinetic energy of a link has two components: one that is due to
its linear motion, and the second due to its rotational motion. If the
linear velocity of the center of mass of a link is v¢,, and if the angular
velocity of the link is w;, the kinetic energy, K; of this link is

1
K; = §(mivgivci + w! Lw;) (4.44)

where “I; is the inertia tensor of link ¢ computed with respect to the
link’s center of mass, C;. The linear velocity at the center v, can be
expressed as a linear combination of the joint velocities, q. Introducing
a Jacobian matrix, .J,,, corresponding to the linear motion of the center-
of-mass of link ¢, the velocity vector ve, can be written as

ve, = Ju.q (4.45)

7

where

JU, — [ apCl apCl L. apCl 0 0 L. 0] (4‘46)

¢ dq1 g2 Jq;
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In this matrix, the columns ¢ + 1 to n in J,, are zero columns, since
the velocity ve, at the center of mass of link ¢ is independent of the
velocities of joint ¢ 4+ 1 to joint n. Similarly the angular velocity can be
expressed as

wWe., = leq (447)

where

Jwi = [§1Z1 E9Zo - E;Z o 0 --- 0] (448)
Using these expressions, the kinetic energy becomes

1 n
K =53 (ma" I dwa+ a" I i) (4.49)

=1

Factoring out the generalized velocities, the kinetic energy can be ex-
pressed as

n

1

=1

Equating this expression to the quadratic form of the kinetic energy
leads to the following explicit form of the mass matrixM,

=1

The mass matrix M is a symmetric positive definite matrix, i.e. m;; =
m;; and T Mg > 0 for ¢ # 0
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4.3.2 Centrifugal and Coriolis Forces

We now consider the relationships between the matrices B and ' with
the matrix M. These relationships can be obtained from the develop-
ment of equation 4.40 defining the vector of centrifugal and Coriolis

forces
T OM
' ) a 3,4
4"

This equation involves time derivatives and partial derivatives of the
elements m;; of the matrix M. We denote by m;;; the partial derivatives

6mij

an

mgr = (4.52)

The time derivative of an element m;; is

dmij

= mirgn
dt k=1

To simplify the development, let us consider the case of a 2 DOF ma-
nipulator. The mass matrix is

M= (m” m”) (4.53)

mia M2

The vector v of centrifugal and Coriolis forces is

7 ) ) ) qT (mlll m121) g
v = Md— 11a Mql(l] (mll m12) q— 1 Mmi21 Mo

2 qTMq2q My Moo 2| o7 M1z Mi22\ -

4 Mig2  MM922 4

These expressions can be developed in the form
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) M99 + M199 — M 2
V(q,q) _ ( 122 122 221)] [?1]4_

(1922 + Ma22 — Maa2) | L¢3

[¢142] (4.54)

—

(my11 + M1 — M)
(ma11 + Mo — ma12)
112 + Mi21 — M2y
212 + Ma21 — Mi22

1
2
1
2

|

Expansion in this form shows a pattern of grouping of coefficients that
leads to the following representation of Christoffel symbols,

3 3

1
bij = §(mijk + Mg — M) (4.55)

Using these symbols the equation above can be written as:

by11 5122] [qf] [25112] ..
= . 4.56
v [ bot bass) L2 + b1 [412] (4.56)

In this equation, the first matrix corresponds to the matrix ' of the
coefficients associated with centrifugal forces, and the second matrix
represents the matrix B corresponding to the the coefficients of Coriolis
forces. In this case of 2 DOF, the matrix C is of dimension (2 x 2) and
Bis (2 x1).

In the general case of n DOF, C is an (n x n) matrix, while B is of
(n=1)n
2

dimensions (n x ). Using these matrices, the vector v is

v(q,q) = C(q)[q*] + B(q)[gd] (4.57)

[¢?] is the symbolic representation of the n x 1 vector of components
¢? (square joint velocities),

@ =147 45 43 ---42]"

[qq] is the (@ x 1) vector of product of joint velocities

[ae]” = [G1de G1Gs - - - G1Gn G243 G2Ga - - - Godin - - - Ginr) Gn]”
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The general forms of the matrices B and C' are

biin braa - brgm
Cla) = 62511 62522 bz’:”” (4.58)
boit buzs oo o
and
Wi1a 2bigs o 2bian 2biss oo 2bran oo 2by(ee1)
Bla) = 25?12 25?13 zb?ln 25?23 zb?% 2527(?_1)71
Worz sz - Zbuan Zbugs o busn o 2ty

(4.59)

Because of the properties of the mass matrix, many of the elements
b;ji are zero. This symmetric, positive definite matrix represents the
inertial properties of the manipulator with respect to joint motion. For
instance, if joint 1 was revolute, my; would represent the inertia (mass
if it were prismatic) of the whole manipulator as it rotates about the
joint axis 1. mqq is independent of the first joint, but varies with the
configuration of the links following in the chain (¢2,¢s,...,¢,). Simi-
larly mg; depends only on ¢s,. .., ¢,, and m,_1)(,—1) depends only on
¢n. Finally m,, is a constant element. These properties result in a
number of zero partial derivatives of the elements of the mass matrix,
and leads to significant simplification of the elements involved in B and

C.

4.3.3 Gravity Forces

The gravity forces are the gradient of the potential energy of the mech-
anism. The potential energy of link ¢ increases with the elevation of
its center of mass. This energy is proportional to the mass, the gravity
constant, and to the height of the center of mass.

Vi = migohi + Vo (4.60)
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Figure 4.7: Potential Energy

Where Vj represents the potential energy at some reference level. The
height is given as the projection of the position vector p¢, along the
gravity direction,

Vi = mi(—9"pc,) (4.61)
The potential energy of the whole manipulator is
V=>V (4.62)

Using the matrix J,,, the gradient of the potential energy is

g=—(Js Ji, - )

Un

(4.63)



140 CHAPTER 4. DYNAMICS

Figure 4.8: Gravity Vector

Direct Computation of g The gravity forces can be directly also
by considering the gravity at the link’s as weights acting at each link’s
center of mass. The gravity forces can then be directly computed as
the torques needed to compensate for these weights. This leads

G = ~(J2 (mig) + I (mag) + - + I (m,g)) (1.61)

We will use ¢ (without boldface) as the scalar gravity constant, ¢ ~
9.8%. We will use g (with boldface) as the gravity acceleration vectory;
the (3 x 1) vector g has a magnitude of g. Finally, we will use the vector
G to indicate the (n x 1) vector of gravity-induced generalized torques
in the Lagrange equations of motion.

4.3.4 Example: 2-DOF RP Manipulator

The links of the RP manipulator shown in Figure 4.9 have total masses
of my and my. The center of mass of link 1 is located at a distance /4
from the joint axis 1, and the center of mass of link 2 is located at the
distance dy from the joint axis 1. The inertia tensors of these links are
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]1’1’1 0 0 ]l’x2 0 0
011 == 0 ]yyl 0 3 and C]Q == 0 ]ny 0 .

0 0 ]Zzl 0 0 ],222

Figure 4.9: 2 DOF RP Manipulator

The Mass Matrix M The mass matrix M can be obtained by ap-
plying equation 4.51 to this 2 DOF manipulator:

M = m1J£Ju1 + ngcjlt]wl + m2J£Ju2 + szclszz-

J,1 and J,3 are obtained by direct differentiation of the vectors:

0

_[1101]_ 10 _[dz(]l]
Por= g1 ¢ P2=1 461"

In frame {0}, these matrices are:

OJUIZ [_1151 0:|’ OJU2: |:_d251 Cl:|

LC1T 0 dy,C1 51
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This yields

0770 . mll% 0], 0770 . [mzc@ 0 ]
ml( Jvl Jvl) - [ 0 0]’ (m2 Jv2 JU?) - 0 me .
The matrices J,; and J, are given by
le = [Elzl 0] = and sz = [Elzl EQZQ] .

Joint 1 is revolute and joint 2 is prismatic. In frame {0}, these matrices
are:

Ole — 0Jw2 —

_ o O
o O O

and

]Zzl 0
0 0

(Ojglcjlojwl) = [ ] ) (Oszclzonz)

|:]ZZQ 0:|
0 0]

Finally, the matrix M is

mll% —I' ]Zzl —I' mng —I' ],222 0 :|

0 mo

-

Centrifugal and Coriolis Vector v The Christoffel Symbols are
defined as
6m2~

—]; with bm == bZ = 0.
g !

bijr = §(mijk‘|‘mikj_mjki)§ where mj, =

For this manipulator, only my; (see matrix M) is configuration depen-
dent — a function of dy. This implies that only mq2 is non-zero,

mi12 = szdg.

Matrix B

o= [)- ()

0 0
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Matrix C
[0 6122]_[ 0 0]
C_[bzn 0] L[—maody 0]
Vector V
v= "t [ o] ()

The Gravity Vector g
G = —[Jmig + JLm,g].
In frame {0}, the gravity vector is

OG:—[_hSl 1101“ 0 ]_[—dm dQCl][ 0 ]

0 0 —myyg C1 S1 —mayg
and
OG _ [(mlll + mzdg)g01:|
mogS1 '
Equations of Motion

0 ma] |G
2m2d2:| s [ 0 0:| [0%] [(mlll —|-m2d2)961:| _ |:T1:|
[ 0 [01d2] + —m2d2 0 d% —I_ maodg sy - T2

Example: 2-DOF RR Equations of Motion

The masses of the links are m; and ms. The center of mass for the first
link is located on the second joint axis at a distance [y from the fixed
origin. The distance from the second joint axis to the center of mass

of link 2 is denoted by /5. The inertia tensors of the links are “1[; and
C
2[5,
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my
A ®
C]2
g I,
9, Hn
C]l

01

Figure 4.10: 2-DOF RR Equations of Motion

]1’1’1 0 0 ]l’x2 0 0
01]1 == 0 ]yyl 0 3 and 02]2 == 0 ]ny 0 .

0 0 ]Zzl 0 0 ],222
Matrix M The mass matrix M is obtained by applying equation 4.51.

M = m1J£Ju1 + ngcjlt]wl + m2J£Ju2 + szclszz-

We compute J,, and J,, by direct differentiation of P, and Fg,.

Op _ [1101]_ and Op _ [1101 -|-12012]
“ lis1]" e lis1 4 l3s12]

In frame {0}, these matrices are:

OLIZ[—ha 0]; OLQZ[—A&_JﬁU _b&ﬂ'

heo 0 licr + lheo lyc12
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This yields

0770 _ mylf 0] . 0770 _ ma(l7 + 13+ 2llses)  ma(l5 + Lilzey)
ml( Jvl Jvl) - [ 0 0 ’ (m2 ‘]u2 Jv2) - mz(l% —|— 111202) mzl%
The matrices J,; and J, are given by

le = [Elzl 0] = and sz = [Elzl EQZQ] .

Both joints are revolute. In frame {0}, these matrices are:
0 0 0 0
Ole =10 0 3 OJWQ =10 0 3
1 0 11

]Zzl 0
0 0

and

CILOL ) = [

:| : (OJEQOIZOJWZ) _ |:1222 1222:| )

],222 ],222

Finally, the matrix M is

M= mﬂ% +1La+ mz(l% + l% +2011,C2) + 1.5 mz(l§ + 111,C2) + ]zzz]

mz(l% + [11:C2) + I.» I3mg + 1.

Centrifugal and Coriolis Vector v The Christoffel Symbols are
defined as

6m2~

1
bi,jk = —( Z’jk—I-mik]‘—m]‘ki); where Mk = —]; with bm == b”Z =0.
2 Iqx
Matrix B
2b 1
B = [ 612] ;o b= §m112;
B = [—211127’)1252]
= 0 .
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Matrix
0 b 1
= [bzn 1022] b by = 5(_7”112); andbige = M9
O = [ 0 —l1lzm252]
L hlomyS2 0 :
Vector v
= —211127”252] ¥ [ 0 —zlzzmQSQ] [93]
V= [ 0 [0105] + l1l5my 52 0 §2

The Gravity Vector g

G = —[Jmig + JLm,g].

In frame {0}, the gravity vector is

OG:_[—llSl 1101][ 0 ]_[—1151—12512 1101—|—12012][ 0 ]

0 0 —miq —12512 12012 —MmMag
and

0y — [[(ml +m2)iC1 + mzlgClQ]g]
N m2120129 )

Equations of Motion

[mﬂ% + Lor +ma(l3 + B+ 200502) 4+ L.y ma(l3 + 11:C2) + Izzz] [fh]

mz(l% —|— 111202) —|— IZZQ l%mQ ‘|’ IZZQ d?
—2[1[277”&252 A 0 —lllQmQSQ 0%
i LGRS PP I 1 K

[(m1 + 77”@)[101 + m212012]g |71
m212012 o 72 )



Chapter 5

Trajectory Generation

5.1 Introduction

The majority of robots in industry perform pick and place operations.
That amounts to positioning a manipulator at a certain point and ori-
entation, grasping an object, moving it over to some other position and
orientation, and ungrasping it. In that motion, the end-effector of the
manipulator traverses some trajectory in such a way so that the rest
of the structure of the manipulator does not collide with the objects in
the workspace.

We can consider several variations of this problem. If we do not know
anything about the environment, we can design it in such a way that
the robot can move in it and perform its tasks as fast as possible. If the
environment is already given (industrial workstation for example) but
we have the freedom to design the robot, we might want to do it in an
optimal manner with respect to some workspace requirements. Finally,
if both the environment and the robot are given (e.g. a PUMA robot
in an industrial workcell) we would like to calculate the best trajectory
for the robot’s end-effector to follow, in order to perform the tasks in
question. In this Chapter we will consider this third problem.

In that framework our goal is: Move the manipulator arm from some
initial position (frame {T'4}) to some desired final position (frame {7T¢})

147
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Figure 5.1: Path points for a manipulator

going through some intermediate via points (e.g. frame {Ts}). The
frames shown in Figure 5.1 represent the position and orientation of the
end-effector with respect to some fixed reference frame in the environ-
ment (for example the workeell for the robot). In terms of terminology
we will call these points (initial, via and final) path points.

We will find a trajectory for the robot’s end-effector to move through
these path points in the desired order. The trajectory is the time his-
tory of the position, velocity and acceleration for the end-effector (in
Cartesian space) or for each degree of freedom of the robot (in Joint
space).

During its motion the manipulator will be subjected to different con-
straints. Those constraints can be spatial (the manipulator should
be within the workspace and should not collide with obstacles in the
workspace), time (certain operations or motions might need to be per-
formed within certain time frame - particularly for industrial robots),
smoothness (we do not want discontinuous motions, particularly if we
are performing insertion tasks where the objects that are manipulated
can be damaged). All these constraints can be expressed mathemati-
cally in terms of the positions, velocities and accelerations of the end-
effector considered.
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5.2 Joint Space vs. Cartesian Space plan-
ning

The planning of the motion of the manipulator can be performed in
Cartesian or in Joint space. In either of these spaces we can calculate
the necessary trajectories that achieve the required motion. Working
in each space has its advantages and disadvantages.

Consider first Joint space. Since we control the torques, any particular
position in the workspace can be accessed. Thus we can go exactly
through the intermediate path points. However if we want to follow
a particular trajectory or track a shape in the workspace, this is not
that easy in joint space. There is no guarrantee that we will be able to
solve the inverse kinematics for all points along the required trajectory
uniquely and continuously.

In Cartesian space, on the other side, we can track shapes exactly
(for example we can follow a straight line). However in order to actually
command torques to the joints to achieve this motion along the straight
line, we need to solve the inverse kinematics at all points along the
trajectory. This needs to be done at every update at the servo rate
which can be very computationally expensive. In joint space there are
generally less calculations.

Another difference between the two spaces is with respect to singulari-
ties. In joint space we do not have problems with singularities because
we are actually planning in the space of the mechanism and all that
needs to be done is to solve the forward kinematics (which has an
unique solution). In Cartesian space, the trajectory that are plannned
might pass through path points corresponding to singularities in joint
space. That will make the motion impossible or in the best case very
expensive.

We will illustrate this discussion with a few examples. In Figure 5.2 the
task is to move from the initial point to the goal point along a straight
line with a 2D two revolute link manipulator (RR). The two links are
of different lengths and the workspace is the donut inside the large
circle and outside the small one. Clearly the straight line trajectory
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Figure 5.2: Unreachable intermediate points

passes through a region outside of the workspace of the manipulator.
Thus even though the initial and final path points are reachable by the
manipulator, some of the intermediate path points are not. Here the
joint limits of the manipulator create the problem.

In the next example in Figure 5.3 our task is the same, but this time
both links of the manipulator are of the same length. Thus the workspace
is the entire inside of the circle and all points along the straight line
path are reachable by the manipulator. However we can not perform
that straight line motion continuosly because toward the middle of the
trajectory we are approaching a singularity. At the singularity the
resulting velocity is infinitely high, thus it is virtually impossible to
control the robot and follow a particular trajectory. Here the problem
is due to singularities of the mechanism.

In the third example in Figure 5.4 all the points along the path are
reachable, the singularity can be dealt with, but the robot still can not
perform the straight line motion. The reason is that the initial and the
goal path points are reachable in different joint space solutions. Thus
we can not continuosly move from one point to the other. Some of the
intermediate points along the path are reachable from below and the
only way to move continuosly from the start to the goal is from below
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Figure 5.3: Approaching singularities of the manipulator

in which case the possible trajectory is not a straight line.

In order to perform the path planning in practice we need to account for
all of these problems. Often the planning is done in a hybrid fashion,
where part of the plan is done in Cartesian space and part in joint
space, in order to avoid some of the problems outlined.

For generality of the discussion for the rest of the chapter we will con-
sider a generic parameter u and do the actual planning for that param-
eter u. We have to remember that if we are planning in joint space we
can substitute for v any of the generalized coordinates ¢;. In fact we
need to plan for each and every one of them in turn and then put the
entire trajectory together in multidimensional vectors.

It we do the planning in Cartesian space, we can substitute for u the
parameters we use for the position or orientation representation. If we
use Cartesian position we will substitute x,y and z for v one by one.
For spherical coordinates we will substitute p,8 and ¢, for cylindrical
- p,d and 6. For orientation trajectories we can use the Euler or fixed
angles «a, 3 and v instead of u, or Fuler parameters, etc.

Independent of which space and which representation we use, the ac-
tual trajectories are just mathematical curves and we will describe them
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Figure 5.4: Different joint space solutions

here as functions of the generic variable u. These trajectories are ac-
tually multi-parameter ones (say q1,q,...,¢, in joint space) but we
will assume that all parameters are independent and plan for each of
them as functions of one scalar variable. In practice we typically choose
the joint or the Cartesian variables to be independent, thus this is a
reasonable approximation.

5.3 Path Planning with Polynomial Tra-
jectories

Having performed these abstractions, the problem we face is to fit a
curve that starts from a given point ug, goes through some intermediate
points (uq,uz,...) and ends in some goal point wu, subject to some
constraints. The constraints are on the position (the curve itself), the
velocity (the first derivative of the curve) or the acceleration (the second
derivative of the curve). We can use a variety of curves, starting with
the simplest one - a straight line- and going to second, third or higher
degree polynomials if necessary. The advantage of using polynomials
is that they, as well as their derivatives, are linear with respect to the
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coeflicients in front of the function variable.

B C

Figure 5.5: Straight lines trajectory

Let us consider the simplest polynomial that can result in a reasonable
analysis - a straight line. If we have a trajectory going through some
intermediate points, we can connect all path points with straight line
segments in the corresponding order as in Figure 5.5. However there is
a potential problem when using straight segments. Usually the inter-
mediate points are there so that the robot avoids obstacles and we want
to be able to move along the path through these intermediate points
in a continuous fashion. That requirement can not be guarranteed by
straight line trajectory.

C

Figure 5.6: Straight lines with blends trajectory

We can take care of this problem by introducing blend regions around
each via point so that the trajectory is smooth and differentiable as
depicted in Figure 5.6. The simplest possible blends that we can use
are parabolic blends. They depend on one parameter only. The motion
starts with half a blend that blends into a straight line segment and
then blends around the first via point, transfers into a straight line, etec.
until the last path point at which the path blends down to zero velocity
and acceleration. A potential problem with this approach is that as we
will see, the formulas for calculating the velocities and accelerations
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are quite involved and we have to constantly keep track of the type of
region we are moving through and use the corresponding formulas.

B\C

Figure 5.7: Higher order polynomials trajectory

In the curve depicted in Figure 5.7 we are using higher order poly-
nomials, in particular cubics. Here the curve itself has higher degree
of smoothness and the given cubic can seemlessly blend into the next
cubic on the chain without the need of specific blend curves. In this
trajectory all curves are of second degree and it is relatively easy to
deal with them.

If we need to satisfy more constraints (e.g. on accelerations and ve-
locities) we might need to use higher degree polynomials or perhaps
trigonometric or transcendental curves. In what follows we will develop
the formulas for the most common cases outlined so far.

Let us start with a cubic spline. The general formula for a cubic spline
is

u(t) = ao + art + ast® + ast’ (5.1)

with its derivative and acceleration being respectively:

u(t) = ay + 2ast + 3azt® (5.2)

and
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In these formulas u is the generic parameter of the functions, the argu-
ment ¢ is the time, and «ag, @y, a; and a3 are the unknown coefficients
that define the trajectory.

The constraints on the trajectory expressed in mathematical form will
define the equations that we will use to calculate the coefficients. The
most imporatnt type of constraints are the initial conditions for the
trajectory. In particular we might be given the initial and final positions
for the function, e.g. f(0) = ug and f(t5) = uy. Graphically this
general cubic function is depicted in Figure 5.8.
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Figure 5.8: A cubic polynomial

If we assume that the manipulator starts from rest and ends at rest,
this is equivalent to writing f(0) = 0 and f(¢;) = 0. This velocity is
graphically depicted in Figure 5.9.

Finally the acceleration is the straight line in Figure 5.10 (the second
derivative of the function).

If we need to satisfy the four conditions above (two for the position and
two for the velocity) they can be written as the following linear system:

apg = Ug (54)
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Figure 5.9: The derivative of a cubic polynomial

ap + arty + Clztfz + Cl3tf3 = us (5.5)
(5.6)

(5.7)

ax
aq + 2G2tf + 3G3tf2

The system has four equations and four unknowns (the parameters
aop, a1, az and as). Since we are using polynomials, this is a linear system
of equations. We can solve for the parameters and that will determine
uniquely the function f. Clearly the acceleration in that case will be
predetermined by those just found parameters and would be beyond
our control, namely

u(t): 6as (5.8)

The linear system above is a very simple one to solve ( we do not even
have to build the entire 4 x 4 matrix and solve it). The solution is the
following
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Figure 5.10: The second derivative of a cubic polynomial

@ = 0 (5.10)
b = B/t — ) (5.11)
as = (—Z/tf?’)(uf—uo) (5.12)

and the resulting function f is:

u(t) = up + %(uf — up)t? + (—%)(uf — )t (5.13)
In the general case for n equations and n unknowns we will build an
n xn linear system. If the determinant of the linear system is zero, that
means that the conditions we are trying to solve are not independant
and we can satisty additional conditions. That also means that we can
control all these conditions independently.

5.4 Planning with Intermediate Points

It the targeted motion requires the manipulator to go through some
intermediate points, several cubic splines need to be jointed together at
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via points. If we were to stop (i.e have velocity zero) at each via point,
we can directly use the formulas derived above. However in general a
smooth motion requires continuous velocities, i.e. the velocity at the
end of each segment is the same (non-zero) velocity as the one at the
beginning of the next segment. In that case the two conditions for the
velocity will be:

The new linear system of equations is

ag = Ug (5.16)

ao + arty 4+ ag(ts)* +as(ty)® = wuy (5.17)
4 = 1o (5.18)

ar + 2aq9t 4+ 3asz(ts)? = g (5.19)

and its solution is

apg = Ug (520)
a; = 120 (521)
3 2, 1.
ay = —(up—up) — —tg — —uy (5.22)
2 ts ts
2 I, . .
ty ty

These formulas are slightly more complicated than the single cubic case.

The values that are used above for the initial conditions can be derived
from different requirements. The positions come from the workspace
of the manipulator (the Cartesian coordinates of the points on the
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path). The velocities can be due to the linear and angular velocities
of the manipulator (using the Jacobian for finding the joint velocities).
Alternatively we can let the system choose some reasonable velocities
based on heuristic or deterministic considerations. We can also choose
the velocities’ values to achieve continuous velocities (t(t) = u2(0))
or accelerations (i (t5) = ti2(0)).

"1
)

Figure 5.11: A straight line segment

5.5 Straight paths with Parabolic blends

The next trajectory segments that we will consider are the linear ones.
The general equation in this case is

u(t) = ag + ast (5.24)

where the motion starts at time Zy, ends at time ¢; with corresponding
values for u : ug and vy as depicted in Figure 5.11.
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There are only two parameters ag and a; that define a single line seg-
ment. Thus we can satisfy at most two constraints, in particular the
position in the beginning and at the end. The result is a linear system
of two equations with two unknowns). Obviously we have no control
over the velocity and that is why it is not appropriate to chain line seg-
ments for trajectory through intermediate path points. The velocity is
discontinuous and constant for each segment. To deal with this prob-
lem we introduce parabolic blends between the line segments shown in

Figure 5.12.

Figure 5.12: Linear segment with a parabolic blend

The general equation for a parabolic blend is

u(t) = %at? (5.27)

where a is the parameter that we can use to satisfy constraints. The
velocity in the blend is a linear function of time (u(t) = at), while the
acceleration is the constant a (i(¢) = @). Thus during a parabolic blend
u(t) = Lit®. To smooth the motion in the beginning and at the end of
a linear segment, we add a parabolic blend (half blends per segment)
at both ends. If we denote with ¢, the time when the first blend ends
and t; as the time at the end of that segment, we can derive:
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¢ ut? —4u(uy —u
b= — v (g = w) (5.28)
2 2u

where

t=1;—1o (5.29)

is the desired duration of the motion.

In other words, if we know the acceleration we can define the blend
region, as well as the time for the blend. These are all the parameters
that are necessary for a motion described by a straight segment with
parabolic blends.

We can now put several of these trajectory segments together. The
goal is to move from the initial path point to the final path point
via several intermediate points using straight segments and parabolic
blends. The actual motion will start with a half blend that turns into a
line segment until we reach close to the first intermediate point. At that
point we include a full blend that connects the line segment between
initial point and first via point, and the line segment between the first
and the second via path points. The trajectory continues similarly as
illustrated in Figure 5.13. The last line segment connects via a half
blend to the goal path point for a smooth and continuous motion.

As denoted in the figure, there are several time parameters: t4; is the
duration for the motion from via point ¢ to via point j, #; is the time
for the blend region around path point ¢ and ¢;; is the time for the
linear segment between path points ¢ and j. The parameters include
the velocities u;; for the part between path points 2 and j as well as the
acceleration u; of the blend region for point ¢. The following quantities
can be considered as given in the problem:

e the positions of the path points along the trajectory u;, u;, ug, ur, ty,

o the desired time durations for each segment 445, L4k, tawt, Laim:
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Figure 5.13: Linear interpolation with parabolic blends

e in some cases we also have some information about the magnitude
of the accelerations in the blends |i;], |i;], |k, |t].

What needs to be computed is (in this order):

e the blend times at each path point #;,¢;,tx, 1, 1,3
o the straight segments times ¢;;. %k, s, Lim;
o the velocities of each segment v, @k, Wi, Wi

e the signs of the accelerations (are we accelerating or deccelerating)
at each via point.

From the parameters that need to be given, the magnitudes of the ac-
celerations are usually determined by the system and the configuration
of the robot. Using them, as well as the information about the prob-
lems that need to be solved, we can compute the desired time durations

tdij-
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The parameters above allow us to build the entire trajectory by comput-
ing all necessary entities by the formulas below. For the first segment
the formulas are:

i = stgn(ug — uy) || (5.30)
2 _
tl — tdlg - \/t?IIQ - M (531)
Uy
. Uy — Uy
= = 5.32
e fans — Ty (5.32)
t12 - tdlg - tl - %tz (533)

The inside segments can be computed using:

Uy = % (5.34)
j

ﬁk = Sign(ﬂkl - u]k) |uk| (535)
f = Tk (5.36)

lig

1 1
t]‘k = tdjk — §t]‘ — §tk (537)
The last segment yields:
Uy, = Stgn(Un—1 — Uy,) |ty (5.38)
2(tUp — Up—1)

tn = tig-1yn — ¢ i1y + P (5.39)

. Up — Up—1
Uty = —— 5.40
=1) td(n—l)n - %tn ( )

1

t(n—l)n = td(n—l)n —t, — §tn—1 (541)

Please note that the initial and the final position sets of formulas are
slightly different than the others. They reflect the different treatment
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that the first and the last half blends have. The formulas above are
derived in the Appendix. The formulas are arranged in the order needed
to calculate the motion.

5.6 Generalized Path planning

There are a few interesting features of the computed trajectory.

iy

Pseudo Via Points

OCriginal
Via Point

~
7 .

i

Figure 5.14: "Pseudo” via points in the trajectory

As seen in Figure 5.14, this trajectory does not pass exactly through
the via points because of the blends. If we do need to pass through
these via points, there are several possible approaches. We can double
the intermediate points and thus force the trajectory to go through
them (it will create a straight segment through the points) . We can
also introduce two artificial path points close by on different sides of the
via points infinitesimally close to them. Finally we can use sufficiently
high acceleration to go through the actual via points exactly.

In some applications there is a need to satisfy more conditions for a
single segment. In that case we will need more parameters and thus
higher degree polynomials. For example if two values are used for the
position, two for the velocities and two for the accelerations, we will
need a polynomial of degree 5 (quintic polynomial u(t) = ag + a1t +
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ast? +azt® +ast* +ast®). We can also fit algebraic series, sine and cosine
waves and other higher-dimensional functions.

The discussion so far in the chapter was for functions f(u) of one vari-
able. For joint or Cartesian space there are 6 to 12 parameters that
describe the complete position and orientation of the end-effector or
the joint variables. The planning needs to be done for each of the
parameters individually and then integrated in the general plan for
manipulation.

The trajectories (defined in terms of the path parametres u, @ and )
often need to be computed at run-time. If we are working in joint space
directly, the calculations are similar to above. In Cartesian space, as
mentioned earlier in the chapter, we need to solve the inverse kniemat-
ics quite often while moving along. At each update we will solve for
the sequence of the parameters at a frequency equivalent to the ones
commonly used.

In real world applications there are a number of objects in the workspace
of the manipulator, which for consistancy we will call obstacles (they
can be moving or fixed obstacles , parts of the environment, etc.).
The plan for the motion of the manipulator needs to go around these
obstacles in an optimal way. This area of research is called ”Motion
Planning” and is extensively discussed in a variety of publications. We
will refer the reader to some of these books. That planning needs to
consider gross (for the main structure) and fine motion planning (for
the end-effctor movement). We can also talk about global (in the whole
space) vs. local ( for a mini- manipulator at the end of the structure)
planning. Other techniques are using configuration space or potential
field approach. C-space (or configuration space) obstacles are the ob-
stacles "grown” by the dimensions of the moving robot, so that the
robot is represented by a point.

As mentioned in the beginning of this chapter, we can extend our con-
sideration to include the cases when we are trying to design a robot
that is optimized for a particular environment, or create both the en-
vironment and the robot simultaneously. Interesting situations include
cases where more than one robot share a workspace, or there are non-
holonomic constraints for the robot motion. For more discussions on
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these topics please refer to the bibliography.



Chapter 6

Manipulator Control

6.1 Introduction

In this chapter, we first review the basics of PID controllers. Next,
we present the general control structure for dynamic decoupling and
control of joint motions. Finally, we present the basics of the task-
oriented operational space control, which provides dynamic decoupling
and direct control of end-effector motions.

Let us consider the task of controlling the motion of an n-DOF ma-
nipulator for some goal configuration defined by a set of desired joint
positions. This task can be accomplished by selecting n independent
proportional-derivative, PD, controllers that affect each joint to move
from its current position to the goal position. Fach of these controllers
can be viewed as a spring-damper system attached to the joint. The
spring’s neutral position corresponds to the goal position of the joint,
as illustrated in Figure 6.1. Any disturbance from that position would
result in a restoring force that moves the joint back to its goal position.
During motion, the damper contributes to the stability of the system.

These simple controllers are widely used in industrial robots to execute
point-to-point motion tasks. However, these controllers are limited in
their ability to perform motion tracking or any task that involves inter-
action with the environment. In motion, the manipulator is subjected

167
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Figure 6.1: Manipulator with springs and dampers

to the dynamic forces acting on its links. By ignoring these forces, PD
controllers are limited in their performance for these tasks. The control
structures needed to address the dynamics of manipulator systems are
presented in section 6.6.2. Our discussion here focuses on independent
PD controllers.

When the goal position is specified in terms of the end effector con-
figuration, the manipulator can be directly controlled at the end ef-
fector. We could imagine placing a 3D spring-damper system at the
end-effector itself, instead of the once we placed at the joints. The end
effector will be then attracted to move to its goal position by the stiff-
ness of the spring, and the stability of the motion will be provided by
the damper.

A more general way to think about this approach is to imagine the
application of a force at the end-effector, as the gradient of some at-
tractive potential field, whose minimum is at the goal position. We
will need to add some damping proportional to the velocity to stabilize
the system at the goal position. To produce this type of control, it is
necessary to be able to create a force at the end-effector, which must be
produced by the actuators at the joints. This can be accomplished with
the transpose of the Jacobian, which relates forces at the end effector
to corresponding torques at the joints. This allows direct control of the
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effector without requiring any inverse kinematics.

7

1

Figure 6.2: Potential Field for a manipulator

The difficulty in practice with such controllers is their limited perfor-
mance for motion control, since the dynamics of the manipulator are
ignored. The incorporation of the dynamics for the end-effector control
is discussed in section 6.7.1.

Control with Inverse Kinematics Typically robot control has the
following structure

Let x4 be the desired position and orientation of the end effector. The
inverse kinematics are used to find the corresponding desired joint po-
sition qq. This is a vector of desired positions for each joint that is
transmitted to a set of independent controllers each of which is trying
to minimize the error between the desired joint position and actual joint
position. These controllers are simple PD or PID controllers. Because
of the computational complexity of inverse kinematics, this approach
is difficult to use for tasks involving real-time modifications of the end-
effector desired position and orientation.

Control with Linearized Kinematics Another approach to the
task transformation problem relies on the linearized kinematics and
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Figure 6.3: Inverse kinematics robot control

the use of the Jacobian and its inverse. This approach called resolved
motion rate control was first proposed by Whitney in 1972.

To a small joint space displacement éq corresponds a small end-effector
displacement 6x. Given éq, the corresponding displacement éx is given

by

ox = J(q)éq (6.1)

When it exists, the inverse of the Jacobian allows us to compute the
displacement 6q that corresponds to a desired displacement 6x,

Sq=J M q)éx (6.2)

It the manipulator task consisted of following a path of the end effec-
tor, this relationship can be used to continuously increment the joint
position in accordance with small displacements along the end-effector
path. At a given configuration q, the end-effector position and orien-
tation is determined by the forward kinematics, x = f(q). Selecting
a neighboring desired end-effector configuration x; results in a small
end-effector displacement.
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Figure 6.4: Linearized kinematics robot control

X =X4 —X

Using the inverse of the Jacobian matrix, we can establish the corre-
sponding joint displacement é¢

dq=J " (q)éx

From the current joint configuration q, this allows to compute the de-
sired joint configuration q  as,

qq¢ = q+ 6q

In general, the task transformation problem involves, in addition, trans-
formations of the end-effector desired velocities and accelerations into
joint descriptions. Task transformations are computationally demand-
ing and are difficult to carry out in real-time.
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6.2 Passive Natural Systems

The behavior of a PD controlled mechanism has common characteristics
with passive spring-damper systems. In this section, we will consider
the mass-spring-damper system shown in Figure 6.5. The study of this
natural 1 DOF system will provide the basis for the development of PD
controllers.

k

j—w\/\wi X X X Friction

4’X

Figure 6.5: Spring-mass system

6.2.1 Conservative Systems

Consider a mass m connected to a spring of stiffness k. The position of
the mass is determined by the coordinate x, and the neutral position
of the spring is assumed at x = 0. The kinetic energy of this system is

K = —mz?

The potential energy of this system is due to the spring. The mass is
subjected to the force

f=—kx
which is the gradient of the spring potential energy
1
V= §k$2

The Lagrangian equation for this system is
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S-S0 (63)
T x

This system is conservative, since the only force acting on it is a con-
servative force due to a potential energy. On the right hand side of
Lagrange’s equation, the external force is zero. The total energy of the
system is therefore constant. Thus this system is stable, but oscillatory.
The equation of motion is

mz + kxr =0 (6.4)

We can initially set the potential energy of the system by pulling on
the mass. The system will start with zero kinetic energy, its velocity
will increase and the potential energy will be transfered into kinetic
energy. When the potential energy becomes zero, the kinetic energy
will be transferred back to the potential energy.

As illustrated in Figure 6.6, the potential is set to some level. After
its release, the mass oscillates between two positions with a frequency
that depends on both k£ and m — higher frequency with higher stiffness
and smaller mass. The natural frequency, w, of this system is

Wy, =4[ — (6.5)

m

The equation of motion can be written in the form

T+ wix =0 (6.6)

and the time response, x(t), of this system is

x(t) = ccos(w,t + ¢) (6.7)

where ¢ and ¢ are constants depending on the initial conditions.
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Figure 6.6: System’s response

6.2.2 Dissipative Systems
In a real setting there is always some amount of friction acting on a

mechanical system. Let us assume that the friction acting on our mass-
spring is simply viscous,

ffriction = —bx

With the friction, the Lagrange equation is

d oL oL

E(%) - % — ffriction (68)
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The dissipative force fgiction appears now as an external force on the
right hand side of the equation. This system is dissipative, and is
described by the second order equation

mi +br+ kx =0 (6.9)

To analyze the characteristics of this system, we divide the equation

by m. \/k/m represents the natural frequency of the system and b/m
represents the damping of the system.

. b . k
r+—ax+—x=0 (6.10)
m m

The friction results in an oscillatory-damped behavior. As the friction
coefficient b increases, the the magnitude of oscillations decreases at a
faster rate. If b was very large, the system will be over damped. 1t
will never cross the zero axis, slowly moving toward the goal position.
Between these two states, there is a ceritically-damped behavior of the
system. As we will see, this behavior is quite desirable in the devel-
opment of control systems. The analysis of the time-response of the
system shows that the critically-damped state is reached when

b

— = 2w, 6.11

° (6.11)
Treating the critically-damped state as a reference sate, we introduce
a ratio describing the damping b/m with respect to its critical value
when b/m = 2w,,. The natural damping ratio is defined as

b b
n = = 6.12
¢ 2w,m 2 km (6.12)

The system is critically damped when ¢ = 1, It’s over damped if £ > 1,
and oscillatory when ¢ < 1. With w, and &,, the equation of motion is

T+ 26w, + wix =0 (6.13)
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Figure 6.7: Dissipative Systems

The time-response of this system is

z(t) = ce " cos(wpy/1 — E2 + @) (6.14)

x(t) |

IS

- —
wf1-&

Figure 6.8: Dissipative Systems Response

The exponential decreases with the damping ratio, and the frequency

of oscillation is affected by w, (/1 — &2. This quantity is defined as the

damped natural frequency,
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w=wp/1 =&

When ¢, = 1, the system is critically damped and there are no oscilla-

tions. The smaller &,, the closer is the damped natural frequency is to

. . . . 2H
the natural frequency. The period of the oscillations is Y

Example Let us consider the simple example when m = 2.0;b =
4.8;k = 8.0. Since w = wy/1 — €2 we can obtain w, = % = 2,

£y = 57— =06 and w = 2./T =036 = L6,

6.3 Passive-Behavior Control

We are going to reproduce the passive behavior of a natural system
in the design of the robot controller. Let us consider a robot with 1-
DOF prismatic joint, with mass m. The task is to move the robot from
its current configuration, xg, to a desired position z4. The actuation
of this robot involves one force, f, acting on the prismatic link. The
robot equation of motion is

Figure 6.9: Simple goal control

The goal is to find the force f that accomplishes the task, while pro-
viding passive behavior. To achieve this behavior, we select f to be
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conservative — the gradient of a positive potential function. For this
task, the potential function will be designed to have a zero minimum

at the desired position xy,

Vx)

Y
>

Xo X4
Figure 6.10: Potential function

The simplest such function is the potential

V(e)= ghylx — 2"

The gradient of this potential is the conservative force

ov

f=-VVir)= -5

Applying this control to the robot, leads to

0.1 5
—a—x[§kp(:1; — xq)°] (6.15)

mx =

The behavior of the controlled closed-loop system is

mi + ky(x —xq) =0 (6.16)
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This behavior is identical to that we have already seen for the con-
servative mass-spring system. In this controlled system, however, the
natural springiness, is reproduced by the parameter k,, which controls
the artificial stiffness of the closed loop system. Under this control, the
link will oscillate around the desired position x4, in similar fashion to
the mass-spring system. The frequency of this oscillation is determined
by \/k,/m. This frequency represents the closed loop frequency, w of
the controlled system.

With its conservative behavior, this system is stable. However, it is
not asymptotically stable. Asymptotic stability can be achieved by
the application of a dissipative force. This non-conservative force will
appear on the right-hand side of Lagrange equation,

d 0L oL
E(%) - % = Tdissipative (617)

The general condition for asymptotic stability is

j;TTdissipative < 07 for x 7£ 0 (618)

Intuitively, the above condition implies that the dissipative forces are
always acting to oppose the velocity. If we choose the dissipative force
as fq = —k,, the asymptotic stability condition for this system be-
comes

il (—kyi) = —k,2* <0, forx#0 (6.19)

This condition is satisfied if &k, > 0. The total control force becomes
f=—klx —zq) — k@ (6.20)
where k, > 0 and k, > 0. This is simply the conventional proportional-

derivative control. k, is position gain and k, is the velocity gain. The
closed-loop system corresponding to this control is described by

mi + k@ + kyx = kyaq (6.21)
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To determine the characteristics of this 2nd order system, we divide the
above equation by m and introduce the frequency and damping ratio,
as we proceeded with the mass-spring system. This leads to

i 4 2w + wir = wiry (6.22)
with
k
: = D 6.23
ERR. (623
k,

¢ = (6.24)

24/ k,m

where w is the closed-loop frequency and ¢ is the closed-loop damping
ratio. Since these two parameters determines the response of the con-
trolled system, we will first set w and £ to achieve the desired response.
The position gain £, and the velocity gain k, can be then selected in
accordance with the desired behavior. These are

k, = mw? (6.25)
k, = m(2¢w) (6.26)

The above expressions for k, and k, show that both of these gains are
proportional to the mass m, given a selection of w and £. For a system
with unit mass, these gains would be given by

o= WP (6.27)

p

K= 2w (6.28)

k, and k; represent the position and velocity gains that correspond to
a desired dynamic response for a unit-mass system.
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Li=f" with [f'=—kl&—k(v—2q)

and the closed-loop behavior for the single unit-mass system is

1.2 + k;x + k;x = k;xd

Given the control gains for a desired behavior of a unit-mass system,
the gains that provide the same behavior for an m-mass system are
given by

k, = mk;

k, = mk,
and the control f of the m-mass system is

mi = f with f=m/

These relationships play an important role in extending our analysis to
systems with nonlinearities and larger numbers of degrees of freedom.

6.3.1 Nonlinear Systems

Let us consider again the 1-DOF prismatic arm. A more realistic model
of this system will include some amount of friction, which will be ap-
proximated by a nonlinear function of the position and velocity, i.e.
b(x, ). The system is now described by the equation

mi + b(x, &) = f (6.29)

If we were able to model the friction b, we could then use this model
in the control of the system to compensate for this friction, and to
control the resulting linearized system as before. The general structure
for implementing this type of control is
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f=af +7 (6.30)

where 3 represents the portion of the control that compensates for the
nonlinear forces acting on the system, and « is the mass of the system
allowing the use of unit-mass system’s control design f’. Since both
the mass and the nonlinearities in the system most be identified, o and
4 will only be estimates of these quantities. In the case of our system,
«a and [ are

O =

B =

(6.31)
T, &) (6.32)

m and Z(l‘, i) are the estimate for the mass and friction of the system.

mi + b(x, &) = mf + b(x, &) (6.33)

With perfect estimates, (m = m, and b= b), the closed-loop behavior
of this system will be described by the the unit-mass system controlled

by f’

Li=f

Unit mass system

—1> m |——>&——» System —(x, %)

Figure 6.11: Non-linear control system
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f’, the control input of the linearized unit-mass system, will be designed
with k) and k; to achieve the desired behavior. This control structure
is shown in Figure 6.11. The dotted block in this Figure represents the
unit-mass system being controlled by f" with outputs = and z.

6.3.2 Motion Control

The task discussed above concerned placing the robot at a desired po-
sition, x4. The system robot system

mi + b(x, &) = f

is controlled by selecting

f=mf +bx, i)

with

f=-ki- k;(:zj — aq)

where k) and k;, are the PD control gains. With perfect estimates, the
closed-loop behavior is described by

L&+ ka4 k;(:zj —aq)=0 (6.34)

A robot task may involve the tracking of a desired trajectory x4(¢). In
addition to the time-varying desired position, a trajectory tracking task
generally involves the desired velocities and accelerations, i.e. #4(t) and
Z4. The robot control for this task will have an identical structure to
the controller described above, with a new unit-mass control input, f’,
designed for trajectory tracking

f/ = i’d — k;(l‘ — l’d) — k;(l‘ — l’d) (635)

The closed-loop system is described by
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This is a second order system in the error ¢ = © — x4,

E+ ket ke=0 (6.37)

f
‘Lo k! **Lf m 4‘-@J](‘;’System ( x

X, L kz ] ]+— bx, ) )

——

Figure 6.12: Error correction control

The trajectory tracking control system is shown in Figure 6.12. In
addition to position and velocity feedback, trajectory tracking control
involves an acceleration feedforward component that allows the system
to better anticipate changes on the desired trajectory.

6.4 Disturbance Rejection

The linear closed-loop behavior we have achieved relies on the assump-
tion of exact estimates of the system’s parameters. The errors in these
estimates, in addition to other unmodeled aspects of the system, all
contribute to disturbance forces that could affect the performance and
stability of the system. The effects of these disturbances can be min-
imized by appropriate selection of gains, & and k;, involved in the
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unit-mass controller. The larger these gains are the better the distur-
bance rejection of the system becomes. There are, however, various
factors that limit the gains, as we will see in section 6.4.1.

Let us assume that all disturbances acting on the system can be repre-
sented by a single disturbance force fqis, that is directly acting at the
input of system, as illustrated in Figure 6.13. In addition, this distur-
bance force will be assumed to be constant. The system’s equation of
motion becomes

mi 4 b(x, &) = f+ faist (6.38)

-
d
J.fc‘iist
X ’ +
dﬂ@—“ - k; f m t@gg@HSystem [ iCC
xd L 7 ] A
3 i

Figure 6.13: Disturbance rejection control
Using the control structure
f=mf +b(z,z)
and the unit-mass control for trajectory tracking

f/ = i’d — k;(l‘ — l’d) — k;(l‘ — l’d)

The closed-loop behavior of the unit-mass system is

E4kié+ ke = Jaio (6.39)

m
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For a desired position task,

f=-ki- k;(:zj — aq)

The closed-loop behavior of the system is

1.3 + k2 + k;(:zj —xq) = Jais

m

Steady-State Error The steady-state error is determined by analy-
sis of the closed-loop system at rest, i.e. when all derivatives are set to
zero. This leads to the steady-state equation

fdist

m

k;e = (6.40)

Then the steady-state error is

o fdist . fdist

N mkz’? N k,

(6.41)

Thus high values of &, reduce the steady-state error. This also shows
that heavy systems (with large masses) are less sensitive to distur-
bances.

4
m }‘; j;fist

T

Figure 6.14: 1 DOF prismatic manipulator

Example Let us consider the 1-DOF manipulator shown in Figure 6.14.
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The manipulator is controlled to the desired position x,;. The closed-
loop behavior of this system is

mi + ky@ + ky(z —xq) =0 (6.42)

Let us consider the application of a disturbance force, fys, to this
system, and let us find the new position of the manipulator. At rest,
the steady-state equation is

kp(x - l’d) = fdist

and the manipulator is positioned at

fdist
kp

x=xq+

6.4.1 Control Gain Limitations

The higher £, is, the better the disturbance rejection becomes. How-
ever, control gains are limited by various factors involving structural
flexibilities in the mechanism, time-delays in actuators and sensing,
and sampling rates. An increase of k, results in an increase of the
closed-loop frequency w. As this frequency approaches the the first un-
modeled resonant frequency, wiow—resonant, the corresponding mode can
be excited. It is thus important to keep w well below this frequency.
In addition, w must be remain below the frequency corresponding to
the largest time delay, Wiarge—delay. The frequency associated with the
sampling rate, Weampling—rate also imposes a limitation on w. Typically
w 1s selected as

1

w < §wlow—resonant
1

w < gwlarge —delay
1

w < gwsampling—rate
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6.4.2 Integral Control

We have analyzed the performance of PD controllers. The addition of
integral action to a PD controller allows us to further reduce distur-
bance errors. For a trajectory tracking task, A PID controller (proportional-
integral-derivative) involves, in addition to k;, and £/, the integral gain

k. A PID controller for a trajectory tracking task is

=g — K (6 — i) — k(2 — 2g) — K / (¢ — z4)dt (6.43)

The closed-loop behavior in the presence of a disturbance force is

fdist

m

¢+ et e+ k;/edt - (6.44)

The disturbance force is assumed constant. Taking the the derivative
of the equation above yields

CHRE+ RE+ Re=0 (6.45)

The steady-state error equation (all derivatives set to zero) is

e=10

6.5 Actuation System

Let us consider the following illustration of gain selection for effective
inertia optimization. Figure 6.15 depicts a gear reduction system.

The gear ratio is n = %, and the relationships for angles and torques
at the motor and links are

L = NTm (6.47)
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Q\/Iotor Im<

Figure 6.15: Gear Reduction

The corresponding equations of motion are

; 1 . ) 1. .
Tm — ]m(gm + _(]LGL) + bm(gm + —bL(gL (648)
n n
Since
br, = ~0,,
n
we can write
I - by .
T = (I + =)0 + (b + =)0, (6.49)
n n
and
T, = (]L —|— nzjm)éL —|— (bL —|— nzbm)éL (650)

(I + n*l,,) represents the effective inertia, and (br, + 1*b,,) represents
the effective damping both perceived at the link.

Finally, the position and velocity gains can be selected as
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ky = (Ip+0°1n)k, (6.51)
ky = (I + 0Lk, (6.52)

6.6 PD Control for Multi-link Systems

The control of multi-link manipulator system can be accomplished with
a set of PD controllers designed independently for each link. While
sufficient for pick-and-place tasks, this type of control is limited in its
performance for tasks involving trajectory tracking and interactions
with the environment. To analyze the limitations of PD controllers,
let us consider the example of two revolute-joint manipulator shown

Figure 6.16.

Figure 6.16: 2 DOF manipulator example

The dynamic equation of motion for this manipulator is

m11  Mi2 él mi12 A5 0 mi22 9%) (gl) _ (7'1)
<m21 mzz) (92)+< 0 )(0102)+<—m§12 0 ) (9% * 92 B T2
(
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The two scalar equations corresponding to the behavior of joint 1 and
joint 2 are

mllél + m12é2 + m1129192 + m1229§ +G; = 7 (6.54)

m;”éfJFGQ = (6.55)

mzzéz + m21é1 —

In the design of two independent PD controllers for this robot, the
dynamic coupling between the two links is ignored, and these links are
treated as two decoupled systems described by

G,
kv1
i, - +J T J / 0,
Ay ] kp1 S T S Linb/(m”) -
Dy 11+ mga a
m2191 - &912
R kp2 e > » Link2{m,) [T
< + .
| | %
kv2 “
3

Figure 6.17: Controller for 2 DOF example

mllél _= Tl (656)
m22é2 _= T2 (657)
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These equations neglect the dynamic forces acting on the joints, and
ignore the configuration dependency of the link inertias. The actual
system is nonlinear and highly coupled, as illustrated in Figure 6.18.
The dynamic disturbances acting on an n-DOF manipulator controlled
by n independent PD systems is illustrated in Figure 6.18.

Zoamyg thi g T g,

—=0—= BD == "y = Joint 1

Qra =

2y, +0, 8, 1T g,
R
Y i ; Gn>n

Figure 6.18: Coupled n DOF control

6.6.1 Stability of PD Control

The dynamics of an n DOF manipulator are described by

Ma+ B(q)lad] + C(a)ld] + g(a) =7 (6.58)

With PD control, the joint torques are selected as
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7=—k(dq—qs) — k.q (6.59)

The stability of this system can be easily concluded, as all external
forces acting on this system are either conservative (—k,(q — qq), gra-
dient of a potential) or dissipative (—k,q). That is

T =—V,Vi— k9 (6.60)

where

1

(Va = §kp(01 - Qd)T(q — q4)

To further analyze the stability, let us consider again Lagrange’s equa-
tion, from which equation 6.58 was obtained.

i(%) . a([( - ‘/gravity)
dt* 0q dq

= —VV;— kg (6.61)

where Viravity Tepresents the system’s natural potential energy due to
the gravity. Applying the control torque of equation 6.60, the controlled
system becomes

d a[( a([( - (‘/gravity + ‘/d))
— =) — — Tdisstpative .62
AL iq Tdissipat (6.62)

where

Tdissipative — — kvq

This shows how the conservative portion of the control modifies the
potential energy (Vgravity t0 Viraviey + V). Without dissipative forces,
this system is oscillatory, but stable. The addition of dissipative force
provides asymptotic stability, under the condition

- T
4 Tdissipative <0
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which is verified for the dissipative force —k,q if &, > 0.

A manipulator controlled with a set of independent PD controllers is
stable, as the effect of these controllers is only to modify the manip-
ulator’s potential energy, while providing the dissipation needed for
asymptotic stability.

6.6.2 Joint Space Dynamic Control

While providing stability, a PD controller is limited in its performance
as it ignores the dynamic coupling forces. High gains provide better
disturbance rejection, but as we mentioned earlier, control gains are
limited by the system’s flexibilities, time delays and sampling rate.
Dynamic decoupling and motion control of the robot system can be

accomplished by a control structure that uses the manipulator dynamic
model. The manipulator dynamics are described by

M(q)g+v(q,q) +glq) =7 (6.63)

Based on this model, the control structure for dynamic decoupling and
control is

T =M(q)r +¥(q,q) + &(a) (6.64)

where 7 represents an estimate. If we apply this control to the robot,
the closed-loop behavior will be described by

L= (M7'M)7 + M~ [(v—%) + (g — 8)] (6.65)

With prefect estimates, the system is described by the unit-mass system

Lg=r1 (6.66)

With a PD design, the control input for the unit-mass systems, 7/, is



6.6. PD CONTROL FOR MULTI-LINK SYSTEMS 195

T =8q— K,(q— qq) — k,(q — qq) (6.67)

and the closed-loop system is

é+kéethie=0 (6.68)

with

€e=q—q

The overall control system is shown in Figure 6.19. This structure
provides decoupling and linearization of the robot system, rendering it
as set of unit-mass systems, controlled by 7/. The control input to the
decoupled system was selected as a set of simple PD controllers, but
obviously other control designs can be used.

T,
4 \ = i ,
i e . + ¥
gd*?_'_ ®4M(q)4’@+—' Arm &

A{écq,w 8a.4)+ 6@ ] [

Q. (1 | 4 ]2
J.UTUSTU B VS LTI UTdZ L alll

Fiéulc 6.1
The input to the control system shown in Figure 6.19 is the joint tra-
jectory, q4, ¢4 and ¢y. However, robot tasks are generally specified in
terms of end-effector descriptions. In which case, the end-effector task
must be first transformed into joint specifications.
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6.7 Operational Space control

The operational space framework provides direct control of the end-
effector motions, eliminating the need for task transformation. The
problem of task transformation and joint coordination is yet more dif-
ficult for manipulation involving redundant mechanisms or multiple
robots. The manipulation of an object, for example, by two robots,
as illustrated in Figure 6.20, requires complex real-time coordination.
This becomes unnecessary with the direct control of the manipulated
object provided in the operational space approach.

&(ﬁ‘fﬁ\

oty

\

:

i
J

Figure 6.20: Multiple arm manipulation

The basic idea in the operational space approach is to control the end
effector by a potential function whose minimum is at the end-effector
goal position.

1
‘/goal(x) = §kp(x - Xgoal)T(X - Xgoal) (669)

The corresponding force, F, that must be created at the end is given
by the gradient of this potential,
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F = _vx‘/goal(x)

This force will be produced by a torque vector at the joint of the robot,
given simply by

7=J'F

Other more complex behaviors can be simply created by the design of
artificial potential functions to avoid joint limits, kinematic singulari-
ties, or obstacles.

To analyze the stability of this type of control, we again resort to La-
grange’s equation

d 0K O(K — Vgravity)

=y = 6.70
7 aq) 74 T (6.70)
The control forces applied to the system are
= JN(=V.V,ou) (6.71)
which can be rewritten as
T ==V, Vyou (6.72)

and the controlled system becomes

i(%) . a([( - (‘/gravity + ‘/goal))
dt " 0q dq

=0 (6.73)

This system is stable. The asymptotic stability requires the addition
of damping forces, for instance

F,=—-kx

The corresponding torques are
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T =J"(—k,x)
and the Lagrange’s equation becomes

d 0K (K — (Vyavity + Vioal))

a'oa) 9 =
The condition for asymptotic stability is
q'r <0 (6.74)

Replacing x by Jq yields

q'ra =~k g (T T)g)] < 0

For a non-redundant manipulator and outside of singularities, J7.J, is a
positive definite matrix, and the quantity [q7(J7.J)q)] is positive. The
system is then asymptotically stable if &, > 0.

6.7.1 Operational Space Dynamics

The description of the dynamics at the end-effector requires first to
select a set of generalized coordinates, x, that represent the end-effector
position and orientation, e.g. (x,y, z, o, 3,7). The kinetic energy of the
system can then be expressed as a quadratic form of the generalized
velocities, X,

1
K, = §>'<TMx>'< (6.75)

where M, represents the mass matrix associated with the inertial prop-
erties at the end effector. Let F be the vector of generalized forces cor-
responding to the generalized coordinates x. The end-effector equations
of motion are
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d DK, UK -V)
dt " 0x 0x

which can be developed in the form

~F (6.76)

M,x+v.(q,q) +g.(q) =F

This equation is similar to the one we have obtained for joint space
dynamics. In fact, joint-space and operational-space dynamics are re-
lated by simple relationships. First let us examine the kinetic energy.
In terms of joint velocities, the kinetic energy of the system is

L.opo.
K, = 5qTMq (6.77)

where M is the joint space mass matrix. Expressing the fact that
K, = K,, we can establish the relationship

JIM,.J =M (6.78)

which leads to

M, =J"TMJ™! (6.79)

The relationship between the gravity force vectors g and g, is simply
given by the transpose of the Jacobian matrix.

g=J"g,

The relationship between v and v, involves the time derivatives of the
Jacobian matrix (X = Jq+ Jx). In summary these relationships are

M, = JTMJ™ (6.80)
v, = J v - M,.Jg (6.81)
g. = J'g (6.82)
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6.7.2 Operational Space Dynamic Control

d
g : X
.o__é \\)—AA F T & B aCll
&, 50— k, D) ——@—— T (g Arm | | ¢ i

V. (3,9)+ G, (a)

Figure 6.21: Operational Space diagram

The end-effector dynamics is described by the equation

M.% 4+ v.(q,q) + g.(q) = F

The control structure for dynamic decoupling and motion control is
F=MF+v,+8. (6.83)
where 7 represents an estimate. F’ is the input of the unit-mass system,
1L.x=F (6.84)

For an end-effector trajectory following, F’ is

F/ = )“(d — kU(X — Xd) — kp(X — Xd) (685)
The operational space control structure is shown in Figure 6.21. Here,

the trajectory is directly specified in terms of end-effector motion, xy,
l"d and l’d



