

Mastering Probabilistic

Graphical Models Using Python

Master probabilistic graphical models by learning

through real-world problems and illustrative code

examples in Python

Ankur Ankan

Abinash Panda

BIRMINGHAM - MUMBAI

Mastering Probabilistic Graphical Models Using Python
Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2015

Production reference: 1280715

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-468-4

www.packtpub.com

www.packtpub.com

Credits

Authors
Ankur Ankan

Abinash Panda

Reviewers
Matthieu Brucher

Dave (Jing) Tian

Xiao Xiao

Commissioning Editor
Kartikey Pandey

Acquisition Editors
Vivek Anantharaman

Sam Wood

Content Development Editor
Gaurav Sharma

Technical Editors
Ankita Thakur

Chinmay S. Puranik

Copy Editors
Shambhavi Pai

Swati Priya

Project Coordinator
Bijal Patel

Proofreader
Safis Editing

Indexer
Mariammal Chettiyar

Graphics
Disha Haria

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

About the Authors

Ankur Ankan is a BTech graduate from IIT (BHU), Varanasi. He is currently
working in the field of data science. He is an open source enthusiast and his major
work includes starting pgmpy with four other members. In his free time, he likes to
participate in Kaggle competitions.

I would like to thank all the pgmpy contributors who have helped
me in bringing it to its current stable state. Also, I would like to
thank my parents for their relentless support in my endeavors.

Abinash Panda is an undergraduate from IIT (BHU), Varanasi, and is currently
working as a data scientist. He has been a contributor to open source libraries such
as the Shogun machine learning toolbox and pgmpy, which he started writing along
with four other members. He spends most of his free time on improving pgmpy and
helping new contributors.

I would like to thank all the pgmpy contributors. Also, I would
like to thank my parents for their support. I am also grateful to
all my batchmates of electronics engineering, the class of 2014, for
motivating me.

About the Reviewers

Matthieu Brucher holds a master's degree from Ecole Supérieure d'Electricité
(information, signals, measures), a master of computer science degree from the
University of Paris XI, and a PhD in unsupervised manifold learning from the
Université de Strasbourg, France. He is currently an HPC software developer at an
oil company and works on next-generation reservoir simulation.

Dave (Jing) Tian is a graduate research fellow and a PhD student in the computer
and information science and engineering (CISE) department at the University
of Florida. He is a founding member of the Sensei center. His research involves
system security, embedded systems security, trusted computing, and compilers.
He is interested in Linux kernel hacking, compiler hacking, and machine learning.
He also spent a year on AI and machine learning and taught Python and operating
systems at the University of Oregon. Before that, he worked as a software developer
in the Linux Control Platform (LCP) group at the Alcatel-Lucent (formerly, Lucent
Technologies) R&D department for around 4 years. He got his bachelor's and
master's degrees from EE in China. He can be reached via his blog at http://
davejingtian.org and can be e-mailed at root@davejingtian.org.

Thanks to the authors of this book for doing a good job. I would also
like to thank the editors of this book for making it perfect and giving
me the opportunity to review such a nice book.

http://davejingtian.org
http://davejingtian.org

Xiao Xiao got her master's degree from the University of Oregon in 2014. Her
research interest lies in probabilistic graphical models. Her previous project was
to use probabilistic graphical models to predict human behavior to help people
lose weight. Now, Xiao is working as a full-stack software engineer at Poshmark.
She was also the reviewer of Building Probabilistic Graphical Models with Python,
Packt Publishing.

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

[i]

Table of Contents

Preface vii
Chapter 1: Bayesian Network Fundamentals 1

Probability theory 2
Random variable 2

Independence and conditional independence 3

Installing tools 5
IPython 5

pgmpy 5

Representing independencies using pgmpy 6
Representing joint probability distributions using pgmpy 7
Conditional probability distribution 8

Representing CPDs using pgmpy 9

Graph theory 11
Nodes and edges 11

Walk, paths, and trails 12

Bayesian models 13
Representation 14

Factorization of a distribution over a network 16

Implementing Bayesian networks using pgmpy 17

Bayesian model representation 18

Reasoning pattern in Bayesian networks 20

D-separation 22

Direct connection 22

Indirect connection 22

Relating graphs and distributions 24
IMAP 24

IMAP to factorization 25

CPD representations 26
Deterministic CPDs 26

Table of Contents

[ii]

Context-specific CPDs 28
Tree CPD 28

Rule CPD 30

Summary 30
Chapter 2: Markov Network Fundamentals 31

Introducing the Markov network 32
Parameterizing a Markov network – factor 33

Factor operations 35

Gibbs distributions and Markov networks 38

The factor graph 42
Independencies in Markov networks 44
Constructing graphs from distributions 46
Bayesian and Markov networks 47

Converting Bayesian models into Markov models 47

Converting Markov models into Bayesian models 51

Chordal graphs 53

Summary 55
Chapter 3: Inference – Asking Questions to Models 57

Inference 57
Complexity of inference 59

Variable elimination 60
Analysis of variable elimination 66

Finding elimination ordering 69

Using the chordal graph property of induced graphs 71

Minimum fill/size/weight/search 71
Belief propagation 72

Clique tree 72

Constructing a clique tree 73

Message passing 76

Clique tree calibration 80

Message passing with division 82

Factor division 83

Querying variables that are not in the same cluster 88

MAP using variable elimination 90
Factor maximization 91
MAP using belief propagation 95
Finding the most probable assignment 96
Predictions from the model using pgmpy 97
A comparison of variable elimination and belief propagation 100
Summary 101

Table of Contents

[iii]

Chapter 4: Approximate Inference 103
The optimization problem 104
The energy function 106
Exact inference as an optimization 107
The propagation-based approximation algorithm 110

Cluster graph belief propagation 112

Constructing cluster graphs 115

Pairwise Markov networks 115

Bethe cluster graph 116

Propagation with approximate messages 117
Message creation 120

Inference with approximate messages 123

Sum-product expectation propagation 123

Belief update propagation 132

Sampling-based approximate methods 138
Forward sampling 139
Conditional probability distribution 141
Likelihood weighting and importance sampling 141
Importance sampling 142
Importance sampling in Bayesian networks 145

Computing marginal probabilities 147

Ratio likelihood weighting 147

Normalized likelihood weighting 147

Markov chain Monte Carlo methods 148
Gibbs sampling 148

Markov chains 149

The multiple transitioning model 152
Using a Markov chain 152
Collapsed particles 154
Collapsed importance sampling 155
Summary 158

Chapter 5: Model Learning – Parameter Estimation in
Bayesian Networks 159

General ideas in learning 160
The goals of learning 160

Density estimation 160

Predicting the specific probability values 162
Knowledge discovery 163

Learning as an optimization 163
Empirical risk and overfitting 164

Table of Contents

[iv]

Discriminative versus generative training 165
Learning task 165

Model constraints 165

Data observability 166

Parameter learning 166
Maximum likelihood estimation 166

Maximum likelihood principle 169

The maximum likelihood estimate for Bayesian networks 171

Bayesian parameter estimation 175
Priors 177

Bayesian parameter estimation for Bayesian networks 179

Structure learning in Bayesian networks 183
Methods for the learning structure 184

Constraint-based structure learning 185

Structure score learning 187

The likelihood score 187

The Bayesian score 190

The Bayesian score for Bayesian networks 193
Summary 196

Chapter 6: Model Learning – Parameter Estimation in
Markov Networks 197

Maximum likelihood parameter estimation 197
Likelihood function 198

Log-linear model 200

Gradient ascent 202

Learning with approximate inference 207

Belief propagation and pseudo-moment matching 208

Structure learning 210

Constraint-based structure learning 210

Score-based structure learning 212

The likelihood score 213

Bayesian score 214

Summary 216
Chapter 7: Specialized Models 217

The Naive Bayes model 217
Why does it even work? 220

Types of Naive Bayes models 223

Multivariate Bernoulli Naive Bayes model 224

Multinomial Naive Bayes model 229

Choosing the right model 231

Dynamic Bayesian networks 231
Assumptions 231

Discrete timeline assumption 232

Table of Contents

[v]

The Markov assumption 232

Model representation 233

The Hidden Markov model 235
Generating an observation sequence 238

Computing the probability of an observation 242

The forward-backward algorithm 243

Computing the state sequence 247

Applications 251
The acoustic model 252

The language model 253

Summary 254
Index 255

[vii]

Preface

This book focuses on the theoretical as well as practical uses of probabilistic
graphical models, commonly known as PGM. This is a technique in machine learning
in which we use the probability distribution over different variables to learn the
model. In this book, we have discussed the different types of networks that can be
constructed and the various algorithms for doing inference or predictions over these
models. We have added examples wherever possible to make the concepts easier to
understand. We also have code examples to promote understanding the concepts
more effectively and working on real-life problems.

What this book covers
Chapter 1, Bayesian Network Fundamentals, discusses Bayesian networks (a type of
graphical model), its representation, and the independence conditions that this type
of network implies.

Chapter 2, Markov Network Fundamentals, discusses the other type of graphical model
known as Markov network, its representation, and the independence conditions
implied by it.

Chapter 3, Inference – Asking Questions to Models, discusses the various exact inference
techniques used in graphical models to predict over newer data points.

Chapter 4, Approximate Inference, discusses the various methods for doing
approximate inference in graphical models. As doing exact inference in the case of
many real-life problems is computationally very expensive, approximate methods
give us a faster way to do inference in such problems.

Preface

[viii]

Chapter 5, Model Learning – Parameter Estimation in Bayesian Networks, discusses
the various methods to learn a Bayesian network using data points that we have
observed. This chapter also discusses the various methods of learning the network
structure with observed data.

Chapter 6, Model Learning – Parameter Estimation in Markov Networks, discusses
various methods for learning parameters and network structure in the case of
Markov networks.

Chapter 7, Specialized Models, discusses some special cases in Bayesian and Markov
models that are very widely used in real-life problems, such as Naive Bayes, Hidden
Markov models, and others.

What you need for this book
In this book, we have used IPython to run all the code examples. It is not necessary to
use IPython but we recommend you to use it. Most of the code examples use pgmpy
and sckit-learn. Also, we have used NumPy at places to generate random data.

Who this book is for
This book will be useful for researchers, machine learning enthusiasts, and people
who are working in the data science field and have a basic idea of machine learning
or graphical models. This book will help readers to understand the details of
graphical models and use them in their day-to-day data science problems.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We are provided with five variables, namely sepallength, sepalwidth,
petallength, petalwidth, and flowerspecies."

Preface

[ix]

A block of code is set as follows:

[default]
raw_data = np.random.randint(low=0, high=2, size=(1000, 5))
data = pd.DataFrame(raw_data, columns=['D', 'I', 'G', 'S', 'L'])

student_model = BayesianModel([('D', 'G'), ('I', 'G'), ('G', 'L'),
('I', 'S')])

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

[default]
raw_data = np.random.randint(low=0, high=2, size=(1000, 5))
data = pd.DataFrame(raw_data, columns=['D', 'I', 'G', 'S', 'L'])

student_model = BayesianModel([('D', 'G'), ('I', 'G'), ('G', 'L'),
('I', 'S')])

student_model = BayesianModel([('D', 'G'), ('I', 'G'), ('G', 'L'),
('I', 'S')])

New terms and important words are shown in bold.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

www.packtpub.com/authors

Preface

[x]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from http://www.packtpub.com/
sites/default/files/downloads/4684OS_ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/sites/default/files/downloads/4684OS_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/4684OS_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[xi]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Bayesian Network

Fundamentals

A graphical model is essentially a way of representing joint probability distribution
over a set of random variables in a compact and intuitive form. There are two main
types of graphical models, namely directed and undirected. We generally use a
directed model, also known as a Bayesian network, when we mostly have a causal
relationship between the random variables. Graphical models also give us tools to
operate on these models to find conditional and marginal probabilities of variables,
while keeping the computational complexity under control.

In this chapter, we will cover:

• The basics of random variables, probability theory, and graph theory
• Bayesian models
• Independencies in Bayesian models
• The relation between graph structure and probability distribution in

Bayesian networks (IMAP)
• Different ways of representing a conditional probability distribution
• Code examples for all of these using pgmpy

Bayesian Network Fundamentals

[2]

Probability theory
To understand the concepts of probability theory, let's start with a real-life situation.
Let's assume we want to go for an outing on a weekend. There are a lot of things to
consider before going: the weather conditions, the traffic, and many other factors.
If the weather is windy or cloudy, then it is probably not a good idea to go out.
However, even if we have information about the weather, we cannot be completely
sure whether to go or not; hence we have used the words probably or maybe.
Similarly, if it is windy in the morning (or at the time we took our observations), we
cannot be completely certain that it will be windy throughout the day. The same
holds for cloudy weather; it might turn out to be a very pleasant day. Further, we
are not completely certain of our observations. There are always some limitations in
our ability to observe; sometimes, these observations could even be noisy. In short,
uncertainty or randomness is the innate nature of the world. The probability theory
provides us the necessary tools to study this uncertainty. It helps us look into options
that are unlikely yet probable.

Random variable
Probability deals with the study of events. From our intuition, we can say that some
events are more likely than others, but to quantify the likeliness of a particular event,
we require the probability theory. It helps us predict the future by assessing how likely
the outcomes are.

Before going deeper into the probability theory, let's first get acquainted with the basic
terminologies and definitions of the probability theory. A random variable is a way of
representing an attribute of the outcome. Formally, a random variable X is a function
that maps a possible set of outcomes Ω to some set E, which is represented as follows:

X : Ω → E

As an example, let us consider the outing example again. To decide whether to
go or not, we may consider the skycover (to check whether it is cloudy or not).
Skycover is an attribute of the day. Mathematically, the random variable skycover
(X) is interpreted as a function, which maps the day (Ω) to its skycover values (E).
So when we say the event X = 40.1, it represents the set of all the days {ω} such
that () 40.1skycoverf w = , where skycoverf is the mapping function. Formally speaking,

(){ }: 40.1skycoverw f wΩ =ε .

Random variables can either be discrete or continuous. A discrete random variable can
only take a finite number of values. For example, the random variable representing
the outcome of a coin toss can take only two values, heads or tails; and hence, it is
discrete. Whereas, a continuous random variable can take infinite number of values.
For example, a variable representing the speed of a car can take any number values.

Chapter 1

[3]

For any event whose outcome is represented by some random variable (X), we can
assign some value to each of the possible outcomes of X, which represents how
probable it is. This is known as the probability distribution of the random variable
and is denoted by P(X).

For example, consider a set of restaurants. Let X be a random variable representing
the quality of food in a restaurant. It can take up a set of values, such as {good, bad,
average}. P(X), represents the probability distribution of X, that is, if P(X = good) = 0.3,
P(X = average) = 0.5, and P(X = bad) = 0.2. This means there is 30 percent chance of a
restaurant serving good food, 50 percent chance of it serving average food, and 20
percent chance of it serving bad food.

Independence and conditional independence
In most of the situations, we are rather more interested in looking at multiple
attributes at the same time. For example, to choose a restaurant, we won't only be
looking just at the quality of food; we might also want to look at other attributes,
such as the cost, location, size, and so on. We can have a probability distribution
over a combination of these attributes as well. This type of distribution is known
as joint probability distribution. Going back to our restaurant example, let the
random variable for the quality of food be represented by Q, and the cost of food be
represented by C. Q can have three categorical values, namely {good, average, bad},
and C can have the values {high, low}. So, the joint distribution for P(Q, C) would
have probability values for all the combinations of states of Q and C. P(Q = good, C
= high) will represent the probability of a pricey restaurant with good quality food,
while P(Q = bad, C = low) will represent the probability of a restaurant that is less
expensive with bad quality food.

Let us consider another random variable representing an attribute of a restaurant, its
location L. The cost of food in a restaurant is not only affected by the quality of food
but also the location (generally, a restaurant located in a very good location would
be more costly as compared to a restaurant present in a not-very-good location).
From our intuition, we can say that the probability of a costly restaurant located at
a very good location in a city would be different (generally, more) than simply the
probability of a costly restaurant, or the probability of a cheap restaurant located at a
prime location of city is different (generally less) than simply probability of a cheap
restaurant. Formally speaking, P(C = high | L = good) will be different from P(C = high)
and P(C = low | L = good) will be different from P(C = low). This indicates that the
random variables C and L are not independent of each other.

Bayesian Network Fundamentals

[4]

These attributes or random variables need not always be dependent on each other.
For example, the quality of food doesn't depend upon the location of restaurant. So,
P(Q = good | L = good) or P(Q = good | L = bad)would be the same as P(Q = good), that
is, our estimate of the quality of food of the restaurant will not change even if we have
knowledge of its location. Hence, these random variables are independent of each other.

In general, random variables { }1 2, , , nX X X… can be considered as independent of
each other, if:

() () () ()1 2 1 2, , , n nP X X X P X P X P X=… …

They may also be considered independent if:

() ()1 2
1

, , ,
n

n i
i

P X X X P X
=

=∏…

We can easily derive this conclusion. We know the following from the chain rule of
probability:

P(X, Y) = P(X) P(Y | X)

If Y is independent of X, that is, if X | Y, then P(Y | X) = P(Y). Then:

P(X, Y) = P(X) P(Y)

Extending this result on multiple variables, we can easily get to the conclusion that
a set of random variables are independent of each other, if their joint probability
distribution is equal to the product of probabilities of each individual random variable.

Sometimes, the variables might not be independent of each other. To make this
clearer, let's add another random variable, that is, the number of people visiting the
restaurant N. Let's assume that, from our experience we know the number of people
visiting only depends on the cost of food at the restaurant and its location (generally,
lesser number of people visit costly restaurants). Does the quality of food Q affect the
number of people visiting the restaurant? To answer this question, let's look into the
random variable affecting N, cost C, and location L. As C is directly affected by Q,
we can conclude that Q affects N. However, let's consider a situation when we know
that the restaurant is costly, that is, C = high and let's ask the same question, "does the
quality of food affect the number of people coming to the restaurant?". The answer
is no. The number of people coming only depends on the price and location, so if we
know that the cost is high, then we can easily conclude that fewer people will visit,
irrespective of the quality of food. Hence, |Q N C⊥ .

This type of independence is called conditional independence.

Chapter 1

[5]

Installing tools
Let's now see some coding examples using pgmpy, to represent joint distributions and
independencies. Here, we will mostly work with IPython and pgmpy (and a few other
libraries) for coding examples. So, before moving ahead, let's get a basic introduction
to these.

IPython
IPython is a command shell for interactive computing in multiple programming
languages, originally developed for the Python programming language, which offers
enhanced introspection, rich media, additional shell syntax, tab completion, and a
rich history. IPython provides the following features:

• Powerful interactive shells (terminal and Qt-based)
• A browser-based notebook with support for code, text, mathematical

expressions, inline plots, and other rich media
• Support for interactive data visualization and use of GUI toolkits
• Flexible and embeddable interpreters to load into one's own projects
• Easy-to-use and high performance tools for parallel computing

You can install IPython using the following command:

>>> pip3 install ipython

To start the IPython command shell, you can simply type ipython3 in the terminal.
For more installation instructions, you can visit http://ipython.org/install.html.

pgmpy
pgmpy is a Python library to work with Probabilistic Graphical models. As it's
currently not on PyPi, we will need to build it manually. You can get the source code
from the Git repository using the following command:

>>> git clone https://github.com/pgmpy/pgmpy

Now cd into the cloned directory switch branch for version used in this book and
build it with the following code:

>>> cd pgmpy

>>> git checkout book/v0.1

>>> sudo python3 setup.py install

http://ipython.org/install.html

Bayesian Network Fundamentals

[6]

For more installation instructions, you can visit http://pgmpy.org/install.html.

With both IPython and pgmpy installed, you should now be able to run the
examples in the book.

Representing independencies using
pgmpy
To represent independencies, pgmpy has two classes, namely IndependenceAssertion
and Independencies. The IndependenceAssertion class is used to represent
individual assertions of the form of ()X Y⊥ or ()|X Y Z⊥ . Let's see some code to
represent assertions:

Firstly we need to import IndependenceAssertion
In [1]: from pgmpy.independencies import IndependenceAssertion
Each assertion is in the form of [X, Y, Z] meaning X is
independent of Y given Z.
In [2]: assertion1 = IndependenceAssertion('X', 'Y')
In [3]: assertion1
Out[3]: (X _|_ Y)

Here, assertion1 represents that the variable X is independent of the variable
Y. To represent conditional assertions, we just need to add a third argument to
IndependenceAssertion:

In [4]: assertion2 = IndependenceAssertion('X', 'Y', 'Z')
In [5]: assertion2
Out [5]: (X _|_ Y | Z)

In the preceding example, assertion2 represents ()|X Y Z⊥ .

IndependenceAssertion also allows us to represent assertions in the form of
(), | ,X Y Z A B⊥ . To do this, we just need to pass a list of random variables as
arguments:

In [4]: assertion2 = IndependenceAssertion('X', 'Y', 'Z')
In [5]: assertion2
Out[5]: (X _|_ Y | Z)

http://pgmpy.org/install.html

Chapter 1

[7]

Moving on to the Independencies class, an Independencies object is used to
represent a set of assertions. Often, in the case of Bayesian or Markov networks,
we have more than one assertion corresponding to a given model, and to represent
these independence assertions for the models, we generally use the Independencies
object. Let's take a few examples:

In [8]: from pgmpy.independencies import Independencies
There are multiple ways to create an Independencies object, we
could either initialize an empty object or initialize with some
assertions.

In [9]: independencies = Independencies() # Empty object
In [10]: independencies.get_assertions()
Out[10]: []

In [11]: independencies.add_assertions(assertion1, assertion2)
In [12]: independencies.get_assertions()
Out[12]: [(X _|_ Y), (X _|_ Y | Z)]

We can also directly initialize Independencies in these two ways:

In [13]: independencies = Independencies(assertion1, assertion2)
In [14]: independencies = Independencies(['X', 'Y'],
 ['A', 'B', 'C'])
In [15]: independencies.get_assertions()
Out[15]: [(X _|_ Y), (A _|_ B | C)]

Representing joint probability
distributions using pgmpy
We can also represent joint probability distributions using pgmpy's
JointProbabilityDistribution class. Let's say we want to represent the joint
distribution over the outcomes of tossing two fair coins. So, in this case, the
probability of all the possible outcomes would be 0.25, which is shown as follows:

In [16]: from pgmpy.factors import JointProbabilityDistribution as
 Joint
In [17]: distribution = Joint(['coin1', 'coin2'],
 [2, 2],
 [0.25, 0.25, 0.25, 0.25])

Bayesian Network Fundamentals

[8]

Here, the first argument includes names of random variable. The second argument is
a list of the number of states of each random variable. The third argument is a list of
probability values, assuming that the first variable changes its states the slowest. So,
the preceding distribution represents the following:

In [18]: print(distribution)
╒═════════╤═════════╤══════════════════╕
│ coin1 │ coin2 │ P(coin1,coin2) │
╞═════════╪═════════╪══════════════════╡
│ coin1_0 │ coin2_0 │ 0.2500 │
├─────────┼─────────┼──────────────────┤
│ coin1_0 │ coin2_1 │ 0.2500 │
├─────────┼─────────┼──────────────────┤
│ coin1_1 │ coin2_0 │ 0.2500 │
├─────────┼─────────┼──────────────────┤
│ coin1_1 │ coin2_1 │ 0.2500 │
╘═════════╧═════════╧══════════════════╛

We can also conduct independence queries over these distributions in pgmpy:

In [19]: distribution.check_independence('coin1', 'coin2')
Out[20]: True

Conditional probability distribution
Let's take an example to understand conditional probability better. Let's say we have
a bag containing three apples and five oranges, and we want to randomly take out
fruits from the bag one at a time without replacing them. Also, the random variables
1X and 2X represent the outcomes in the first try and second try respectively. So, as

there are three apples and five oranges in the bag initially, ()1 0.375P X apple= = and
()1 0.625P X orange= = . Now, let's say that in our first attempt we got an orange. Now,

we cannot simply represent the probability of getting an apple or orange in our second
attempt. The probabilities in the second attempt will depend on the outcome of our first
attempt and therefore, we use conditional probability to represent such cases. Now,
in the second attempt, we will have the following probabilities that depend on the

outcome of our first try: ()2 1
3|
7

P X apple X orange= = = , ()2 1
4|
7

P X orange X orange= = = ,

()2 1
2|
7

P X apple X apple= = = , and ()2 1
5|
7

P X orange X apple= = = .

The Conditional Probability Distribution (CPD) of two variables 1X and 2X can
be represented as ()1 2|P X X , representing the probability of 1X given 2X that is
the probability of 1X after the event 2X has occurred and we know it's outcome.
Similarly, we can have ()2 1|P X X representing the probability of 2X after having
an observation for 1X .

Chapter 1

[9]

The simplest representation of CPD is tabular CPD. In a tabular CPD, we construct
a table containing all the possible combinations of different states of the random
variables and the probabilities corresponding to these states. Let's consider the
earlier restaurant example.

Let's begin by representing the marginal distribution of the quality of food with Q.
As we mentioned earlier, it can be categorized into three values {good, bad, average}.
For example, P(Q) can be represented in the tabular form as follows:

Quality P(Q)

Good 0.3
Normal 0.5
Bad 0.2

Similarly, let's say P(L) is the probability distribution of the location of the restaurant.
Its CPD can be represented as follows:

Location P(L)

Good 0.6
Bad 0.4

As the cost of restaurant C depends on both the quality of food Q and its location L,
we will be considering P(C | Q, L), which is the conditional distribution of C, given
Q and L:

Location Good Bad

Quality Good Normal Bad Good Normal Bad
Cost
High 0.8 0.6 0.1 0.6 0.6 0.05
Low 0.2 0.4 0.9 0.4 0.4 0.95

Representing CPDs using pgmpy
Let's first see how to represent the tabular CPD using pgmpy for variables that have
no conditional variables:

In [1]: from pgmpy.factors import TabularCPD

For creating a TabularCPD object we need to pass three
arguments: the variable name, its cardinality that is the number
of states of the random variable and the probability value

Bayesian Network Fundamentals

[10]

corresponding each state.
In [2]: quality = TabularCPD(variable='Quality',
 variable_card=3,
 values=[[0.3], [0.5], [0.2]])
In [3]: print(quality)
╒════════════════╤═════╕
│ ['Quality', 0] │ 0.3 │
├────────────────┼─────┤
│ ['Quality', 1] │ 0.5 │
├────────────────┼─────┤
│ ['Quality', 2] │ 0.2 │
╘════════════════╧═════╛
In [4]: quality.variables
Out[4]: OrderedDict([('Quality', [State(var='Quality', state=0),
 State(var='Quality', state=1),
 State(var='Quality', state=2)])])

In [5]: quality.cardinality
Out[5]: array([3])

In [6]: quality.values
Out[6]: array([0.3, 0.5, 0.2])

You can see here that the values of the CPD are a 1D array instead of a 2D array,
which you passed as an argument. Actually, pgmpy internally stores the values
of the TabularCPD as a flattened numpy array. We will see the reason for this in
the next chapter.

In [7]: location = TabularCPD(variable='Location',
 variable_card=2,
 values=[[0.6], [0.4]])
In [8]: print(location)
╒═════════════════╤═════╕
│ ['Location', 0] │ 0.6 │
├─────────────────┼─────┤
│ ['Location', 1] │ 0.4 │
╘═════════════════╧═════╛

However, when we have conditional variables, we also need to specify them and the
cardinality of those variables. Let's define the TabularCPD for the cost variable:

In [9]: cost = TabularCPD(
 variable='Cost',
 variable_card=2,
 values=[[0.8, 0.6, 0.1, 0.6, 0.6, 0.05],
 [0.2, 0.4, 0.9, 0.4, 0.4, 0.95]],
 evidence=['Q', 'L'],
 evidence_card=[3, 2])

Chapter 1

[11]

Graph theory
The second major framework for the study of probabilistic graphical models is graph
theory. Graphs are the skeleton of PGMs, and are used to compactly encode the
independence conditions of a probability distribution.

Nodes and edges
The foundation of graph theory was laid by Leonhard Euler when he solved the
famous Seven Bridges of Konigsberg problem. The city of Konigsberg was set on
both sides by the Pregel river and included two islands that were connected and
maintained by seven bridges. The problem was to find a walk to exactly cross all the
bridges once in a single walk.

To visualize the problem, let's think of the graph in Fig 1.1:

Fig 1.1: The Seven Bridges of Konigsberg graph

Bayesian Network Fundamentals

[12]

Here, the nodes a, b, c, and d represent the land, and are known as vertices of the
graph. The line segments ab, bc, cd, da, ab, and bc connecting the land parts are the
bridges and are known as the edges of the graph. So, we can think of the problem
of crossing all the bridges once in a single walk as tracing along all the edges of the
graph without lifting our pencils.

Formally, a graph G = (V, E) is an ordered pair of finite sets. The elements of the set V
are known as the nodes or the vertices of the graph, and the elements of 2E V⊆ are
the edges or the arcs of the graph. The number of nodes or cardinality of G, denoted
by |V|, are known as the order of the graph. Similarly, the number of edges denoted
by |E| are known as the size of the graph. Here, we can see that the Konigsberg city
graph shown in Fig 1.1 is of order 4 and size 7.

In a graph, we say that two vertices, u, v ϵ V are adjacent if u, v ϵ E. In the City graph,
all the four vertices are adjacent to each other because there is an edge for every
possible combination of two vertices in the graph. Also, for a vertex v ϵ V, we define
the neighbors set of v as (){ }| ,u u v Eε . In the City graph, we can see that b and d are
neighbors of c. Similarly, a, b, and c are neighbors of d.

We define an edge to be a self loop if the start vertex and the end vertex of the
edge are the same. We can put it more formally as, any edge of the form (u, u),
where u ϵ V is a self loop.

Until now, we have been talking only about graphs whose edges don't have a
direction associated with them, which means that the edge (u, v) is same as the edge
(v, u). These types of graphs are known as undirected graphs. Similarly, we can think
of a graph whose edges have a sense of direction associated with it. For these graphs,
the edge set E would be a set of ordered pair of vertices. These types of graphs are
known as directed graphs. In the case of a directed graph, we also define the indegree
and outdegree for a vertex. For a vertex v ϵ V, we define its outdegree as the number
of edges originating from the vertex v, that is, (){ }| ,u v u Eε . Similarly, the indegree
is defined as the number of edges that end at the vertex v, that is, (){ }| ,u u v Eε .

Walk, paths, and trails
For a graph G = (V, E) and u,v ϵ V, we define a u - v walk as an alternating sequence
of vertices and edges, starting with u and ending with v. In the City graph of Fig 1.1,
we can have an example of a - d walk as 1 2 3 6: , , , , , , , ,W a e b e c e b e d .

Chapter 1

[13]

If there aren't multiple edges between the same vertices, then we simply represent a
walk by a sequence of vertices. As in the case of the Butterfly graph shown in Fig 1.2,
we can have a walk W : a, c, d, c, e:

Fig 1.2: Butterfly graph—a undirected graph

A walk with no repeated edges is known as a trail. For example, the walk
1 2 3 4: , , , , , , , ,W a e b e c e b e a in the City graph is a trail. Also, a walk with no repeated

vertices, except possibly the first and the last, is known as a path. For example, the
walk 1 2 7 5: , , , , , , , ,W a e b e c e d e a in the City graph is a path.

Also, a graph is known as cyclic if there are one or more paths that start and end at
the same node. Such paths are known as cycles. Similarly, if there are no cycles in a
graph, it is known as an acyclic graph.

Bayesian models
In most of the real-life cases when we would be representing or modeling some
event, we would be dealing with a lot of random variables. Even if we would
consider all the random variables to be discrete, there would still be exponentially
large number of values in the joint probability distribution. Dealing with such huge
amount of data would be computationally expensive (and in some cases, even
intractable), and would also require huge amount of memory to store the probability
of each combination of states of these random variables.

However, in most of the cases, many of these variables are marginally or conditionally
independent of each other. By exploiting these independencies, we can reduce the
number of values we need to store to represent the joint probability distribution.

Bayesian Network Fundamentals

[14]

For instance, in the previous restaurant example, the joint probability distribution
across the four random variables that we discussed (that is, quality of food Q,
location of restaurant L, cost of food C, and the number of people visiting N) would
require us to store 23 independent values. By the chain rule of probability, we know
the following:

P(Q, L, C, N) = P(Q) P(L|Q) P(C|L, Q) P(N|C, Q, L)

Now, let us try to exploit the marginal and conditional independence between the
variables, to make the representation more compact. Let's start by considering the
independency between the location of the restaurant and quality of food over there.
As both of these attributes are independent of each other, P(L|Q) would be the same
as P(L). Therefore, we need to store only one parameter to represent it. From the
conditional independence that we have seen earlier, we know that |N Q C⊥ .
Thus, P(N|C, Q, L) would be the same as P(N|C, L); thus needing only four
parameters. Therefore, we now need only (2 + 1 + 6 + 4 = 13) parameters to
represent the whole distribution.

We can conclude that exploiting independencies helps in the compact representation
of joint probability distribution. This forms the basis for the Bayesian network.

Representation
A Bayesian network is represented by a Directed Acyclic Graph (DAG) and a set of
Conditional Probability Distributions (CPD) in which:

• The nodes represent random variables
• The edges represent dependencies
• For each of the nodes, we have a CPD

In our previous restaurant example, the nodes would be as follows:

• Quality of food (Q)
• Location (L)
• Cost of food (C)
• Number of people (N)

Chapter 1

[15]

As the cost of food was dependent on the quality of food (Q) and the location of
the restaurant (L), there will be an edge each from Q → C and L → C. Similarly,
as the number of people visiting the restaurant depends on the price of food and
its location, there would be an edge each from L → N and C → N. The resulting
structure of our Bayesian network is shown in Fig 1.3:

Fig 1.3: Bayesian network for the restaurant example

Bayesian Network Fundamentals

[16]

Factorization of a distribution over a network
Each node in our Bayesian network for restaurants has a CPD associated to it.
For example, the CPD for the cost of food in the restaurant is P(C|Q, L), as it only
depends on the quality of food and location. For the number of people, it would be
P(N|C, L) . So, we can generalize that the CPD associated with each node would
be P(node|Par(node)) where Par(node) denotes the parents of the node in the graph.
Assuming some probability values, we will finally get a network as shown in Fig 1.4:

Fig 1.4: Bayesian network of restaurant along with CPDs

Let us go back to the joint probability distribution of all these attributes of the
restaurant again. Considering the independencies among variables, we concluded as
follows:

P(Q,C,L,N) = P(Q)P(L)P(C|Q, L)P(N|C, L)

So now, looking into the Bayesian network (BN) for the restaurant, we can say that
for any Bayesian network, the joint probability distribution ()1 2, , , nP X X XK over all
its random variables { }1 2, , , nX X X… can be represented as follows:

() ()()1 2
1

, , , |
n

n i i
i

P X X X P X Par X
=

=∏K

Chapter 1

[17]

This is known as the chain rule for Bayesian networks.

Also, we say that a distribution P factorizes over a graph G, if P can be encoded
as follows:

() ()()1 2
1

, , , |
n

n i G i
i

P X X X P X Par X
=

=∏K

Here, ()GPar X is the parent of X in the graph G.

Implementing Bayesian networks using
pgmpy
Let us consider a more complex Bayesian network of a student getting late for school,
as shown in Fig 1.5:

Fig 1.5: Bayesian network representing a particular day of a student going to school

For this Bayesian network, just for simplicity, let us assume that each random variable is
discrete with only two possible states {yes, no}.

Bayesian Network Fundamentals

[18]

Bayesian model representation
In pgmpy, we can initialize an empty BN or a model with nodes and edges. We can
initializing an empty model as follows:

In [1]: from pgmpy.models import BayesianModel
In [2]: model = BayesianModel()

We can now add nodes and edges to this network:

In [3]: model.add_nodes_from(['rain', 'traffic_jam'])
In [4]: model.add_edge('rain', 'traffic_jam')

If we add an edge, but the nodes, between which the edge is, are not present in the model,
pgmpy automatically adds those nodes to the model.

In [5]: model.add_edge('accident', 'traffic_jam')
In [6]: model.nodes()
Out[6]: ['accident', 'rain', 'traffic_jam']
In [7]: model.edges()
Out[7]: [('rain', 'traffic_jam'), ('accident', 'traffic_jam')]

In the case of a Bayesian network, each of the nodes has an associated CPD with it.
So, let's define some tabular CPDs to associate with the model:

The name of the variable in tabular CPD should be exactly
the same as the name of the node used while creating the
Bayesian network, as pgmpy internally uses this name to
match the tabular CPDs with the nodes.

In [8]: from pgmpy.factors import TabularCPD
In [9]: cpd_rain = TabularCPD('rain', 2, [[0.4], [0.6]])
In [10]: cpd_accident = TabularCPD('accident', 2, [[0.2], [0.8]])
In [11]: cpd_traffic_jam = TabularCPD(
 'traffic_jam', 2,
 [[0.9, 0.6, 0.7, 0.1],
 [0.1, 0.4, 0.3, 0.9]],
 evidence=['rain', 'accident'],
 evidence_card=[2, 2])

Here, we defined three CPDs. We now need to associate them with our model. To
associate them with the model, we just need to use the add_cpd method and pgmpy
automatically figures out which CPD is for which node:

In [12]: model.add_cpds(cpd_rain, cpd_accident, cpd_traffic_jam)
In [13]: model.get_cpds()
Out[13]:

Chapter 1

[19]

[<TabularCPD representing P(rain:2) at 0x7f477b6f9940>,
 <TabularCPD representing P(accident:2) at 0x7f477b6f97f0>,
 <TabularCPD representing P(traffic_jam:2 | rain:2, accident:2) at
 0x7f477b6f9e48>]

Now, let's add the remaining variables and their CPDs:

In [14]: model.add_node('long_queues')
In [15]: model.add_edge('traffic_jam', 'long_queues')
In [16]: cpd_long_queues = TabularCPD('long_queues', 2,
 [[0.9, 0.2],
 [0.1, 0.8]],
 evidence=['traffic_jam'],
 evidence_card=[2])
In [17]: model.add_cpds(cpd_long_queues)
In [18]: model.add_nodes_from(['getting_up_late',
 'late_for_school'])
In [19]: model.add_edges_from(
 [('getting_up_late', 'late_for_school'),
 ('traffic_jam', 'late_for_school')])
In [20]: cpd_getting_up_late = TabularCPD('getting_up_late', 2,
 [[0.6], [0.4]])
In [21]: cpd_late_for_school = TabularCPD(
 'late_for_school', 2,
 [[0.9, 0.45, 0.8, 0.1],
 [0.1, 0.55, 0.2, 0.9]],
 evidence=['getting_up_late',
 'traffic_jam'],
 evidence_card=[2, 2])
In [22]: model.add_cpds(cpd_getting_up_late, cpd_late_for_school)
In [23]: model.get_cpds()
Out[23]:
[<TabularCPD representing P(rain:2) at 0x7f477b6f9940>,
 <TabularCPD representing P(accident:2) at 0x7f477b6f97f0>,
 <TabularCPD representing P(traffic_jam:2 | rain:2, accident:2) at
 0x7f477b6f9e48>,
 <TabularCPD representing P(long_queues:2 | traffic_jam:2) at
 0x7f477b7051d0>,
 <TabularCPD representing P(getting_up_late:2) at 0x7f477b7059e8>,
 <TabularCPD representing P(late_for_school:2 | getting_up_late:2,
 traffic_jam:2) at 0x7f477b705dd8>]

Bayesian Network Fundamentals

[20]

Additionally, pgmpy also provides a check_model method that checks whether the
model and all the associated CPDs are consistent:

In [24]: model.check_model()
Out[25]: True

In case we have got some wrong CPD associated with the model and we want to
remove it, we can use the remove_cpd method. Let's say we want to remove the CPD
associated with variable late_for_school, we could simply do as follows:

In [26]: model.remove_cpds('late_for_school')
In [27]: model.get_cpds()
Out[27]:
[<TabularCPD representing P(rain:2) at 0x7f477b6f9940>,
 <TabularCPD representing P(accident:2) at 0x7f477b6f97f0>,
 <TabularCPD representing P(traffic_jam:2 | rain:2, accident:2) at
 0x7f477b6f9e48>,
 <TabularCPD representing P(long_queues:2 | traffic_jam:2) at
 0x7f477b7051d0>,
 <TabularCPD representing P(getting_up_late:2) at 0x7f477b7059e8>]

Reasoning pattern in Bayesian networks
Would the probability of having a road accident change if I knew that there was a
traffic jam? Or, what are the chances that it rained heavily today if some student
comes late to class? Bayesian networks helps in finding answers to all these questions.
Reasoning patterns are key elements of Bayesian networks.

Before answering all these questions, we need to compute the joint probability
distribution. For ease in naming the nodes, let's denote them as follows:

• Traffic accident as A
• Heavy rain as B
• Traffic jam as J
• Getting up late as G
• Long queues as Q
• Late to school as L

From the chain rule of the Bayesian network, we have the joint probability
distribution JP as follows:

() () () () () (), , , , , | , | | ,JP P A R J G L Q P A P R P J A R P Q G P L G J= =

Chapter 1

[21]

Starting with a simple query, what are the chances of having a traffic jam if I know
that there was a road accident? This question can be put formally as what is the value
of P(J|A = True)?

First, let's compute the probability of having a traffic jam P(J). P(J) can be computed
by summing all the cases in the joint probability distribution, where J = True and J =
False, and then renormalize the distribution to sum it to 1. We get P(J = True) = 0.416
and P(J = True) = 0.584.

To compute P(J|A = True), we have to eliminate all the cases where A = False, and
then we can follow the earlier procedure to get P(J|A = True). This results in P(J =
True|A = True) = 0.72 and P(J = False|A = True) = 0.28. We can see that the chances
of having a traffic jam increased when we knew that there was an accident. These
results match with our intuition. From this, we conclude that the observation of
the outcome of the parent in a Bayesian network influences the probability of its
children. This is known as causal reasoning. Causal reasoning need not only be the
effect of parent on its children; it can go further downstream in the network.

We have seen that the observation of the outcome of parents influence the
probability of the children. Is the inverse possible? Let's try to find the probability of
heavy rain if we know that there is a traffic accident. To do so, we have to eliminate
all the cases where J = False and then reduce the probability to get P(R|J = True). This
results in P(R = True|J = True) = 0.7115 and P(R = False|J = True) = 0.2885. This is
also intuitive. If we knew that there was a traffic jam, then the chances of heavy rain
would increase. This is known as evidential reasoning, where the observation of the
outcomes of the children or effect influences the probability of parents or causes.

Let's look at another type of reasoning pattern. If we knew that there was a traffic
jam on a day when there was no heavy rain, would it affect the chances of a traffic
accident? To do so, we have to follow a similar procedure of eliminating all those
cases, except the ones where R = False and J = True. By doing so, we would get P(A
= True|J = True, R = False) = 0.6 and P(A = False|J = True, R = False) = 0.4. Now, the
probability of an accident increases, which is what we had expected. As we can
see that before the observation of the traffic jam, both the random variables, heavy
rain and traffic accident, were independent of each other, but with the observation
of their common children, they are now dependent on each other. This type of
reasoning is called as intercausal reasoning, where different causes with the same
effect influence each other.

Bayesian Network Fundamentals

[22]

D-separation
In the last section, we saw how influence flows in a Bayesian network, and how
observing some event changes our belief about other variables in the network. In this
section, we will discuss the independence conditions that hold in a Bayesian network
no matter which probability distribution is parameterizing the network.

In any network, there can be two types of connections between variables, direct or
indirect. Let's start by discussing the direct connection between variables.

Direct connection
In the case of direct connections, we have a direct connection between two variables,
that is, there's an edge X → Y in the graph G. In the case of a direct connection, we
can always find some probability distribution where they are dependent. Hence,
there is no independence condition in a direct connection, no matter which other
variables are observed in the network.

Indirect connection
In the case of indirect connections, we have four different ways in which the
variables can be connected. They are as follows:

Fig 3(a): Indirect causal relationship

Fig 3(b): Indirect evidential relationship

Fig 3(c): Common cause relationship

Fig 3(d): Common effect relationship

Chapter 1

[23]

• Indirect causal effect: Fig 3(a) shows an indirect causal relationship between
variables X and Y. For intuition, let's consider the late-for-school model,
where A → J →L is a causal relationship. Let's first consider the case where
J is not observed. If we observe that there has been an accident, then it
increases our belief that there would be a traffic jam, which eventually
leads to an increase in the probability of getting late for school. Here we see
that if the variable J is not observed, then A is able to influence L through J.
However, if we consider the case where J is observed, say we have observed
that there is a traffic jam, then irrespective of whether there has been an
accident or not, it won't change our belief of getting late for school. Therefore,
in this case we see that |A L J⊥ .
More often, in the case of an indirect causal relationship |X Y Z⊥ .

• Indirect evidential effect: Fig 3(b) represents an indirect evidential
relationship. In the late-for-school model, we can again take the example
of L → J ← A. Let's first take the case where we haven't observed J. Now,
if we observe that somebody is late for school, it increases our belief that
there might be a traffic jam, which increases our belief about there being an
accident. This leads us to the same results as we got in the case of an indirect
causal effect. The variables X and Y are dependent, but become independent
if we observe Z, that is |X Y Z⊥ .

• Common cause: Fig 3(c) represents a common cause relationship. Let's take the
example of L ← J → Q from our late-for-school model. Taking the case where
J is not observed, we see that getting late for school makes our belief of being
in a traffic jam stronger, which also leads to an increase in the probability of
being in a long queue. However, what if we already have observed that there
was a traffic jam? In this case, getting late for school doesn't have any effect on
being in a long queue. Hence, we see that the independence conditions in this
case are also the same as we saw in the previous two cases, that is, X is able to
influence Y through Z only if Z is not observed.

• Common effect: Fig 3(d) represents a common effect relationship. Taking
the example of A → J ← B from the late-for-school model, if we have an
observation that there was an accident, it increases the probability of having
a traffic jam, but does not have any effect on the probability of heavy rain.
Hence, A | B. We see that we have a different observation here than the
previous three cases. Now, if we consider the case when J is observed, let's
say that there has been a jam. If we now observe that there hasn't been an
accident, it does increase the probability that there might have been heavy
rain. Hence, A is not independent of B if J is observed. More generally, we
can say that in the case of common effect, X is independent of Y if, and only
if, Z is not observed.

Bayesian Network Fundamentals

[24]

Now, in a network, how do we know if a variable influences another variable? Let's
say we want to check the independence conditions for 1X and nX . Also, let's say
they are connected by a trail 1 2 1n nX X X X−↔ ↔ ↔ ↔K and let Z be the set of
observed variables in the Bayesian network. In this case, 1X will be able to influence

nX if and only if the following two conditions are satisfied:

• For every V structure of the form 1 1i i iX X X− +→ ← in the trail, either iX Zε
or any descendant of iX is an element of Z

• No other node on the trail is in Z

Also, if an influence can flow in a trail in a network, it is known as an active trail. Let's
see some examples to check the active trails using pgmpy for the late-for-school model:

In [28]: model.is_active_trail('accident', 'rain')
Out[28]: False
In [29]: model.is_active_trail('accident', 'rain',
 observed='traffic_jam')
Out[29]: True
In [30]: model.is_active_trail('getting_up_late', 'rain')
Out[30]: False
In [31]: model.is_active_trail('getting_up_late', 'rain',
 observed='late_for_school')
Out[31]: True

Relating graphs and distributions
In the restaurant example or the late-for-school example, we used the Bayesian
network to represent the independencies in the random variables. We also saw that
we can use the Bayesian network to represent the joint probability distribution over
all the variables using the chain rule. In this section, we will unify these two concepts
and show that a probability distribution D can only be represented using a graph G,
if and only if D can be represented as a set of CPDs associated with the graph G.

IMAP
A graph object G is called an IMAP of a probability distribution D if the set
of independency assertions in G, denoted by I(G), is a subset of the set of
independencies in D, denoted by I(D).

Chapter 1

[25]

Let's take an example of two random variables X and Y with the following two
different probability distributions over it:

X Y P(X, Y)

0x 0y 0.25

0x 1y 0.25

1x 0y 0.25

1x 1y 0.25

In this distribution, we can see that P(X) = 0.5 and P(Y) = 0.5. Also, P(X, Y) = P(X)
P(Y). Hence, the two random variables X and Y are independent. If we try to
represent any two random variables using a network, we have three possibilities:

• A graph with two disconnected nodes X and Y
• A graph with an edge from X → Y
• A graph with an edge from Y → X

We can see from the previous distribution that () { }I D X Y= ⊥ . In the case of
disconnected nodes, we also have () { }I G X Y= ⊥ , whereas for the other two graphs,
we have I(G) = φ . Hence, all the three graphs are IMAPS of the distribution, and any
of these can be used to represent the probability distribution. However, the graph
with both nodes disconnected is able to best represent the probability distribution
and is known as the Perfect Map.

IMAP to factorization
The structure of the Bayesian network encodes the independencies between the
random variables, and every probability distribution for which this BN is an
IMAP needs to satisfy these independencies. This allows us to represent the joint
probability distribution in a very compact form.

Taking the example of the late-for-school model, using the chain rule, we can show
that for any distribution, the joint probability distribution would be as follows:

P(A, R, J, L, S, Q) = P(A) × P(R|A) × P(J|A, R) × P(L|A, R, J) × P(S|A, R, J, L) ×

 P(Q|A, R, J, L, S)

Bayesian Network Fundamentals

[26]

However, if we consider a distribution for which the BN is an IMAP, we get
information about the independencies in the distribution. As we can see in this
example, we know from the Bayesian network structure that S is independent of
A and R, given J and L; Q is independent of A, R, and L, and S, given J; and so on.
Applying all these conditions on the equation for joint probability distribution
reduces it to the following:

P(A, R, J, L, S, Q) = P(A) × P(R) × P(J|A, R) × P(L) × P(S|J, L) × P(Q|J)

Every graph object has associated independencies with it. These independencies
allow us to represent the joint probability distribution of the BN in a compact form.

CPD representations
Till now, we have only been working with tabular CPDs. In a tabular CPD, we take
all the possible combinations of different states of a variable and represent them
in a tabular form. However, in many cases, tabular CPD is not the best choice to
represent CPDs. We can take the example of a continuous random variable. As a
continuous variable doesn't have states (or let's say infinite states), we can never
create a tabular representation for it. There are many other cases which we will
discuss in this section when other types of representation are a better choice.

Deterministic CPDs
One of the cases when the tabular CPD isn't a good choice is when we have a
deterministic random variable, whose value depends only on the values of its parents
in the model. For such a variable X with parents Par(X), we have the following:

()() ()(){1 if0 otherwise| x f Par XP X Par X ==

Here, ()() ():f Val Par X Val X→ .

Chapter 1

[27]

We can take the example of logic gates (AND, OR, and so on), where the output of
the gate is deterministic in nature and depends only on its inputs. We represent it as
a Bayesian network, as shown in Fig 1.7:

Fig 1.7: A Bayesian network for a logic gate. X and Y are the inputs, A and B are the outputs
and Z is a deterministic variable representing the operation of the logic gate.

Here, X and Y are the inputs to the logic gate and Z is the output. We usually denote
a deterministic variable by double circles. We can also see that having a deterministic
variable gives up more information about the independencies in the network. If
we are given the values of X and Y, we know the value of Z, which leads us to the
assertion ()1 0

1 : , : 0T Lρ .

Bayesian Network Fundamentals

[28]

Context-specific CPDs
We saw the case of deterministic variables where there was a structure in the
CPD, which can help us reduce the size of the whole CPD table. As in the case of
deterministic variables, structure may occur in many other problems as well. Think
of adding a variable Flat Tyre to our late-for-school model. If we have a Flat Tyre (F),
irrespective of the values of all other variables, the value of the Late for school variable
is always going to be 1. If we think of representing this situation using a tabular
CPD, we will have all the values for Late for school corresponding to F = 1 that will be
1, which would essentially be half the table. Hence, if we use tabular CPD, we will
be wasting a lot of memory to store values that can simply be represented by a single
condition. In such cases, we can use the Tree CPD or Rule CPD.

Tree CPD
A great option to represent such context-specific cases is to use a tree structure
to represent the various contexts. In a Tree CPD, each leaf represents the various
possible conditional distributions, and the path to the leaf represents the conditions
for that distribution. Let's take an example by adding a Flat Tyre variable to our
earlier model, as shown in Fig 1.8:

Fig 1.8: Network after adding Flat Tyre (T) variable

Chapter 1

[29]

If we represent the CPD of L using a Tree CPD, we will get something like this:

Fig 1.9: Tree CPD in case of Flat tyre

Here, we can see that rather than having four values for the CPD, which we would
have to store in the case of Tabular CPD, we only need to store three values in the
case of the Tree CPD. This improvement doesn't seem very significant right now,
but when we have a large number of variables with high cardinalities, there is a very
significant improvement.

Now, let's see how we can implement this using pmgpy:

In [1]: from pgmpy.factors import TreeCPD, Factor
In [2]: tree_cpd = TreeCPD([
 ('B', Factor(['A'], [2], [0.8, 0.2]), '0'),
 ('B', 'C', '1'),
 ('C', Factor(['A'], [2], [0.1, 0.9]), '0'),
 ('C', 'D', '1'),
 ('D', Factor(['A'], [2], [0.9, 0.1]), '0'),
 ('D', Factor(['A'], [2], [0.4, 0.6]), '1')])

pgmpy also supports Tree CPDs, where each node has
more than one variable.

Bayesian Network Fundamentals

[30]

Rule CPD
Rule CPD is another more explicit form of representation of CPDs. Rule CPD is
basically a set of rules along with the corresponding values of the variable. Taking
the same example of Flat Tyre, we get the following Rule CPD:

()
()
()
()
()
()

1 0
1

1 1
2

0 1 0
3

1 1 1
4

0 0 0
5

0 0 1
6

: , : 0

: , :1

: , , : 0.95

: , , : 0.05

: , , : 0.03

: , , : 0.97

T L

T L

T J L

T J L

T J L

T J L

ρ

ρ

ρ

ρ

ρ

ρ

Let's see the code implementation using pgmpy:

In [1]: from pgmpy.factors import RuleCPD
In [2]: rule = RuleCPD('A', {('A_0', 'B_0'): 0.8,
 ('A_1', 'B_0'): 0.2,
 ('A_0', 'B_1', 'C_0'): 0.4,
 ('A_1', 'B_1', 'C_0'): 0.6,
 ('A_0', 'B_1', 'C_1'): 0.9,
 ('A_1', 'B_1', 'C_1'): 0.1})

Summary
In this chapter, we saw how we can represent a complex joint probability
distribution using a directed graph and a conditional probability distribution
associated with each node, which is collectively known as a Bayesian network. We
discussed the various reasoning patterns, namely causal, evidential, and intercausal,
in a Bayesian network and how changing the CPD of a variable affects other
variables. We also discussed the concept of IMAPS, which helped us understand
when a joint probability distribution can be encoded in a graph structure.

In the next chapter, we will see that when the relationship between the variables are
not causal, a Bayesian model is not sufficient to model our problems. To work with
such problems, we will introduce another type of undirected model, known as a
Markov model.

[31]

Markov Network

Fundamentals

In the previous chapter, we saw how we can represent a joint probability

distribution (JPD) using a directed graph and a set of conditional probability

distributions (CPDs). However, it's not always possible to capture the
independencies of a distribution using a Bayesian model. In this chapter, we will
introduce undirected models, also known as Markov networks. We generally use
Markov networks when we can't naturally define directionality in the interaction
between random variables.

In this chapter, we will cover:

• The basics of factors and their operations
• The Markov model and Gibbs distribution
• The factor graph
• Independencies in the Markov model
• Conversion of the Bayesian model to the Markov model and vice versa
• Chordal graphs and triangulation heuristics

Markov Network Fundamentals

[32]

Introducing the Markov network
Let's take an example of four people who go out for dinner in different groups of two.
A goes out with B, B goes out with C, C with D, and D with A. Due to some reasons
(maybe due to a bad relationship), B doesn't want to go with D, and the same holds
true for A and C. Let's think about the probability of them ordering food of the same
cuisine. From our social experience, we know that people interacting with each other
may influence each other's choice of food. In general, we can say that if A influences
B's choice and B influences C's, then A might (as it is probabilistic) indirectly be
influencing C's choice. However, given B's and D's choices, we can say with confidence
that A won't affect C's choice of food. Formally, we can put this as | ,A C B D⊥ . Similarly,

| ,B D A C⊥ as there is no direct interaction between A and C nor between B and D.

Let's try to model these independencies using a Bayesian network:

In the preceding figure, the one labeled Fig 2.1(a) is the Bayesian network
representing | ,A C B D⊥ , whereas the one labeled Fig 2.1(b) is the Bayesian
network representing | ,B D A C⊥

The first Bayesian network, Fig 2.1(a), satisfied the first independence assertion, that
is, | ,A C B D⊥ , but it couldn't satisfy the second one. Similarly, the second Bayesian
network, Fig 2.1(b), satisfied the independence assertion | ,B D A C⊥ , but not the
other one. Thus, neither of them is an I-Map for the distribution. Hence, we see that
directed models have a limitation and there are conditions that we are unable to
represent using directed models.

Chapter 2

[33]

Fig 2.2 Undirected graphical model encoding independencies | ,A C B D⊥ and | ,B D A C⊥

To correctly represent these independencies, we require an undirected model, also
known as a Markov network. These are similar to the Bayesian network, in the sense
that we represent all the random variables in the form of nodes, but we represent
the dependencies or interaction between these random variables with an undirected
edge. Before we go into the representation of these models, we need to think about
the parameterization of these models. In the Bayesian network, we had a CPD
(| (X))i iP X Par associated with every node iX . As we don't have any directional

influence or a parent-children relationship in the case of the Markov network,
instead of using CPDs, we use a more symmetric representation called factor, which
basically represents how likely it is for some states of a variable to agree with the
states of other variables.

Parameterizing a Markov network – factor
Formally, a factor φ of a set of random variables X is defined as a function mapping
values of X to some real number

!

:

X Val X! "() : () !

Markov Network Fundamentals

[34]

Unlike CPDs, there is no notion of directionality or causal relationship among
random variables in factors. Factors help in symmetric parameterization of random
variables. As the values in a factor don't represent the probability, they are not
constrained to sum up to 1 or to be in the range [0,1]. In general, they represent the
similarities (or, sometimes, compatibility) among the random variables. Therefore,
the higher the value of a combination of states, the greater the compatibility for those
states of variables. For example, if we say that two binary random variables A and
B are likely to be in the same state rather than different states, we can have a factor
where 0 0 0 1(,) (,)a b a bφ φ> , 0 0 1 0(,) (,)a b a bφ φ> , 1 1 1 0(,) (,)a b a bφ φ> , and 1 1 0 1(,) (,)a b a bφ φ> .
This situation can be represented by a factor as follows:

A B ()A,Bφ

0a 0b 1000

0a 1b 1

1a 0b 5

1a 1b 100

We also define the scope of a factor to be the set of random variables over which it is
defined. For example, the scope of the preceding factor is {A, B}.

In pgmpy, we can define factors in the following way:

Firstly we need to import Factor
In [1]: from pgmpy.factors import Factor

Each factor is represented by its scope,
cardinality of each variable in the scope and their values
In [2]: phi = Factor(['A', 'B'], [2, 2], [1000, 1, 5, 100])

In pgmpy, the order in which variables are passed to the factor
also has significance. The entries in the factors assume that the
random variables on the right change more frequently than the
ones present on left (as represented in the previous example).

Chapter 2

[35]

Now let's try printing a factor:

In [3]: print(phi)

a b phi(A,B)

A_0 B_0 1000.0000
A_0 B_1 1.0000
A_1 B_0 5.0000
A_1 B_1 100.0000

Factors subsume the notion of CPD. So, in pgmpy, CPD classes such as TabularCPD,
TreeCPD, and RuleCPD are derived from the Factor class.

Factor operations
There are numerous mathematical operations on factors; the major ones are
marginalization, reduction, and product.

The marginalization of a factor is similar to its probabilistic marginalization. If we
marginalize a factor φ whose scope is W with respect to a set of random variables X, it
means to sum out all the entries of X, to reduce its scope to { }W - X . Here's an example
for marginalizing a factor:

In the preceding example phi, let's try to marginalize it with
respect to B
In [4]: phi_marginalized = phi.marginalize('B', inplace=False)
In [5]: phi_marginalized.scope()
Out[6]: ['A']
If inplace=True (default), it would modify the original factor
instead of returning a new one
In [7]: phi.marginalize('A')
In [8]: print(phi)
╒═════╤═══════════=╕
│ B │ phi(B) │
╞═════╪═══════════=╡
│ B_0 │ 1005.0000 │
├─────┼───────────-┤
│ B_1 │ 101.0000 │
╘═════╧═══════════=╛

In [9]: phi.scope()
Out[9]: ['B']

A factor can be also marginalized with respect to more than one
random variable

Markov Network Fundamentals

[36]

In [10]: price = Factor(['price', 'quality', 'location'],
 [2, 2, 2],
 np.arange(8))
In [11]: price_marginalized = price.marginalize(
 ['quality', 'location'],
 inplace=False)
In [12]: price_marginalized.scope()
Out[12]: ['price']
In [13]: print(price_marginalized)
╒═════════╤══════════════╕
│ price │ phi(price) │
╞═════════╪══════════════╡
│ price_0 │ 6.0000 │
├─────────┼──────────────┤
│ price_1 │ 22.0000 │
╘═════════╧══════════════╛

Reduction of a factor φ whose scope is W to the context ix means removing all
the entries from the factor where iX x= . This reduces the scope to W X− , as φ no
longer depends on X.

In the preceding example phi, let's try to reduce to the context
of b_0
In [14]: phi = Factor(['a', 'b'], [2, 2], [1000, 1, 5, 100])
In [15]: phi_reduced = phi.reduce(('b', 0), inplace=False)
In [16]: print(phi_reduced)
╒═════╤═══════════╕
│ a │ phi(a) │
╞═════╪═══════════╡
│ a_0 │ 1000.0000 │
├─────┼───────────┤
│ a_1 │ 5.0000 │
╘═════╧═══════════╛

In [17]: phi_reduced.scope()
Out[17]: ['a']

If inplace=True (default), it would modify the original factor
instead of returning a new object.
In [18]: phi.reduce(('a', 1))
In [19]: print(phi)
╒═════╤══════════╕
│ b │ phi(b) │
╞═════╪══════════╡
│ b_0 │ 5.0000 │
├─────┼──────────┤
│ b_1 │ 100.0000 │
╘═════╧══════════╛

Chapter 2

[37]

In [20]: phi.scope()
Out[20]: ['b']

A factor can be also reduced with respect to more than one
random variable
In [21]: price_reduced = price.reduce(
 [('quality', 0), ('location', 1)],
 inplace=False)
In [22]: price_reduced.scope()
Out[22]: ['price']

The term factor product refers to the product of factors 1φ with a scope X and 2φ with
scope Y to produce a factor φ with a scope X Y∪ :

In [23]: phi1 = Factor(['a', 'b'], [2, 2], [1000, 1, 5, 100])
In [24]: phi2 = Factor(['b', 'c'], [2, 3],
 [1, 100, 5, 200, 3, 1000])
Factors product can be accomplished with the * (product)
operator
In [25]: phi = phi1 * phi2
In [26]: phi.scope()
Out[26]: ['a', 'b', 'c']
In [27]: print(phi)
╒═════╤═════╤═════╤══════════════╕
│ a │ b │ c │ phi(a,b,c) │
╞═════╪═════╪═════╪══════════════╡
│ a_0 │ b_0 │ c_0 │ 1000.0000 │
├─────┼─────┼─────┼──────────────┤
│ a_0 │ b_0 │ c_1 │ 100000.0000 │
├─────┼─────┼─────┼──────────────┤
│ a_0 │ b_0 │ c_2 │ 5000.0000 │
├─────┼─────┼─────┼──────────────┤
│ a_0 │ b_1 │ c_0 │ 200.0000 │
├─────┼─────┼─────┼──────────────┤
│ a_0 │ b_1 │ c_1 │ 3.0000 │
├─────┼─────┼─────┼──────────────┤
│ a_0 │ b_1 │ c_2 │ 1000.0000 │
├─────┼─────┼─────┼──────────────┤
│ a_1 │ b_0 │ c_0 │ 5.0000 │
├─────┼─────┼─────┼──────────────┤
│ a_1 │ b_0 │ c_1 │ 500.0000 │
├─────┼─────┼─────┼──────────────┤
│ a_1 │ b_0 │ c_2 │ 25.0000 │
├─────┼─────┼─────┼──────────────┤
│ a_1 │ b_1 │ c_0 │ 20000.0000 │
├─────┼─────┼─────┼──────────────┤
│ a_1 │ b_1 │ c_1 │ 300.0000 │
├─────┼─────┼─────┼──────────────┤
│ a_1 │ b_1 │ c_2 │ 100000.0000 │
╘═════╧═════╧═════╧══════════════╛

Markov Network Fundamentals

[38]

or with product method
In [28]: phi_new = phi.product(phi1, phi2)
would produce a factor with phi_new = phi * phi1 * phi2

Gibbs distributions and Markov networks
In the previous section, we saw that we use factors to parameterize a Markov
network, which is quite similar to CPDs. Hence, we may think that factors behave
in the same way as the CPD. Marginalizing and normalizing it may represent the
probability of a variable, but this intuition turns out to be wrong, as we will see in
this section. A single factor is just one contribution to the overall joint probability
distribution; to have a joint distribution over all the variables, we need the
contributions from all the factors of the model. For the dinner example, let's consider
the following factors to parameterize the network.

Factor over the variables A and B represented by ()A,Bφ :

A B ()A,Bφ

0a 0b 90

0a 1b 100

1a 0b 1

1a 1b 10

Factor over the variables B and C represented by ()B,Cφ :

B C ()B,Cφ

0b 0c 10

0b 1c 80

1b 0c 70

1b 1c 30

Chapter 2

[39]

Factor over variables C and D represented by ()C,Dφ :

C D ()C,Dφ

0c 0d 10

0c 1d 1

1c 0d 100

1c 1d 90

Factor over variables A and D represented by ()D,Aφ :

D A ()D,Aφ

0d 0a 80

0d 1a 60

1d 0a 20

1d 1a 10

Now, considering the preceding factors, let's try to calculate the probability of A by
just considering the factor ()A,Bφ . On normalizing and marginalizing the factor
with respect to B, we get ()0a 0.945P = and ()1a 0.055P = . Now, let's try to compute
the probability by considering all the factors. To do this, we first need to calculate the
factor product of these factors:

A B C D ()A,B,C,Dφ 1/ Z ()A,B,C,Dφ∗

0a 0b 0c 0d 38 10∗ 1.0360 10 4∗ −

0a 0b 0c 1d 30.2 10∗ 2.5901 10 6∗ −

0a 0b 1c 0d 364 10∗ 8.2883 10 4∗ −

0a 0b 1c 1d 316 10∗ 2.0720 10 4∗ −

Markov Network Fundamentals

[40]

A B C D ()A,B,C,Dφ 1/ Z ()A,B,C,Dφ∗

0a 1b 0c 0d 556 10∗ 7.2522 10 2∗ −

0a 1b 0c 1d 414 10∗ 1.8130 10 3∗ −

0a 1b 1c 0d 624 10∗ 3.1081 10 1∗ −

0a 1b 1c 1d 56 10∗ 7.7702 10 3∗ −

1a 0b 0c 0d 454 10∗ 6.9932 10 3∗ −

1a 0b 0c 1d 39 10∗ 1.1655 10 4∗ −

1a 0b 1c 0d 5432 10∗ 5.5946 10 1∗ −

1a 0b 1c 1d 472 10∗ 9.3243 10 3∗ −

1a 1b 0c 0d 442 10∗ 5.4392 10 3∗ −

1a 1b 0c 1d 37 10∗ 9.0653 10 4∗ −

1a 1b 1c 0d 518 10∗ 2.3310 10 2∗ −

1a 1b 1c 1d 43 10∗ 3.8851 10 4∗ −

Now, if we normalize and marginalize this factor product, we get ()0 0.3940P a = and
()1 0.6059P a = . Here, we see that there is a huge difference in the probability when we

consider only a single factor as compared to when we consider all the factors. Hence,
our intuition of factors behaving like CPDs is wrong.

Therefore, in a Markov network over a set of variables 1 2{ , ,..., }mX X X X= having
a set of factors 1 2{ , ,..., }nφ φ φΦ = associated with it, we can compute the joint
probability distribution over these variables as follows:

1 2
1(, ,...,)mP X X X
Z φ

φ
Φ

= ∏
ε

Here, Z is the partition function and
1 2, ,..., nX X X

Z
φ

φ
Φ

= ∑ ∏
ε

.

Chapter 2

[41]

Also, a distribution Pφ is called a Gibbs distribution parameterized by a set of factors
() () (){ }1 1 2 2, ,..., n nD D Dφ φ φΦ = if it is defined as follows:

() () () ()()1 2, 3 1 1 2 2 3 3
1(, ,...,) ...n n nP X X X X D D D D
Zφ φ φ φ φ= ∗ ∗ ∗ ∗

Here, () () () ()()
1 2

1 1 2 2 3 3
, ,...,

...
n

n n
X X X

Z D D D Dφ φ φ φ= ∗ ∗ ∗ ∗∑ is a normalizing constant called
the partition function.

To construct a Markov network, we need to associate the parameterization of a Gibbs
distribution to the set of factors of an undirected graph structure. A factor with the X
and Y scopes represents a direct relationship between them.

Let's see how we can represent a Markov model using pgmpy:

First import MarkovModel class from pgmpy.models
In [1]: from pgmpy.models import MarkovModel
In [2]: model = MarkovModel([('A', 'B'), ('B', 'C')])
In [3]: model.add_node('D')
In [4]: model.add_edges_from([('C', 'D'), ('D', 'A')])

Now, let's try to define a few factors to associate with this model:

In [5]: from pgmpy.factors import Factor
In [6]: factor_a_b = Factor(variables=['A', 'B'],
 cardinality=[2, 2],
 value=[90, 100, 1, 10])
In [7]: factor_b_c = Factor(variables=['B', 'C'],
 cardinality=[2, 2],
 value=[10, 80, 70, 30])
In [8]: factor_c_d = Factor(variables=['C', 'D'],
 cardinality=[2, 2],
 value=[10, 1, 100, 90])
In [9]: factor_d_a = Factor(variables=['D', 'A'],
 cardinality=[2, 2],
 value=[80, 60, 20, 10])

We can associate the factors to the model using the add_factors method:

In [10]: model.add_factors(factor_a_b, factor_b_c,
 factor_c_d, factor_d_a)
In [11]: model.get_factors()
Out[11]:
[<Factor representing phi(A:2, B:2) at 0x7f18504477b8>,
 <Factor representing phi(B:2, C:2) at 0x7f18504479b0>,
 <Factor representing phi(C:2, D:2) at 0x7f1850447f98>,
 <Factor representing phi(D:2, A:2) at 0x7f1850455358>]

Markov Network Fundamentals

[42]

The factor graph
The Markov network doesn't give a very clear picture of the Gibbs parameterization
of the distribution because we can't conclude whether the factors in it involve the
maximal cliques or subgraphs. To overcome this limitation of the Markov network,
we require a representation that can show the parameterization explicitly. The factor
graph is one such representation.

A factor graph is a bipartite graph, one disjoint set being variable nodes, representing
the variables, and the other being factor nodes, representing factors. An edge
between a variable node and a factor node denotes that the random variable belongs
to the scope of the factor. Thus, a factor graph is parameterized by a set of factors,
where each of them is associated with a factor node, whose scope is all sets of all the
random variables that it is neighbor to.

Generally, all the variable nodes are represented by a circle and all the factor nodes
are represented by a square. Here's an example:

Fig 2.3 Factor graph

In the preceding factor graph, there are three variable nodes A, B, and C and three factor
nodes associated with three factors, namely ()1 ,A Bφ , ()2 ,B Cφ , and ()3 ,C Aφ . This
representation is more explicit than the Markov network (Fig 2.4 (a)). From the Markov
network, without checking the factors, we can't know whether the factors involve
maximal clique (A, B, C) or their subgraphs {(A, B), (B, C), (C, A)}. This information is
explicitly specified in the factor graph.

Chapter 2

[43]

Fig 2.4 (a) Markov network of the corresponding factor graph in Fig 2.3

Fig 2.4 (b) Factor graph parameterized by factors involving maximal clique of the Markov network

In pgmpy, factor graphs can be created as follows:

First import FactorGraph class from pgmpy.models
In [1]: from pgmpy.models import FactorGraph
In [2]: factor_graph = FactorGraph()

Add nodes (both variable nodes and factor nodes) to the model
as we did in previous other models
In [3]: factor_graph.add_nodes_from(['A', 'B', 'C', 'D',
 'phi1', 'phi2', 'phi3'])

Add edges between all variable nodes and factor nodes
In [4]: factor_graph.add_edges_from(
 [('A', 'phi1'), ('B', 'phi1'),
 ('B', 'phi2'), ('C', 'phi2'),
 ('C', 'phi3'), ('A', 'phi3')])

The FactorGraph class doesn't make any prior assumption about nodes; that is, it
doesn't know which nodes are variable nodes and which nodes are factor nodes. It
allows us to add edges between any nodes as long as they don't violate the bipartite
nature of the factor graph. As soon as the bipartite property is violated by the
addition of an edge, it raises the ValueError exception:

We can also add factors into the model
In [5]: from pgmpy.factors import Factor
In [6]: import numpy as np
In [7]: phi1 = Factor(['A', 'B'], [2, 2], np.random.rand(4))
In [8]: phi2 = Factor(['B', 'C'], [2, 2], np.random.rand(4))
In [9]: phi3 = Factor(['C', 'A'], [2, 2], np.random.rand(4))
In [10]: factor_graph.add_factors(phi1, phi2, phi3)

Markov Network Fundamentals

[44]

We can also convert a Markov model into a factor graph and vice versa:

In [11]: from pgmpy.models import MarkovModel
In [12]: mm = MarkovModel()
In [13]: mm.add_nodes_from(['A', 'B', 'C'])
In [14]: mm.add_edges_from([('A', 'B'), ('B', 'C'), ('C', 'A')])
In [15]: mm.add_factors(phi1, phi2, phi3)
In [16]: factor_graph_from_mm = mm.to_factor_graph()

While converting a markov model into factor graph, factor nodes
would be automatically added the factor nodes would be in the
form of phi_node1_node2_...

In [17]: factor_graph_from_mm.nodes()
Out[17]: ['C', 'B', 'phi_A_B', 'phi_B_C', 'phi_C_A', 'C']
In [18]: factor_graph.edges()
Out[18]: [('phi_A_B', 'A'), ('phi_A_C', 'A'), ('B', 'phi_B_C'),
 ('B', 'phi_A_B'), ('C', 'phi_B_C'), ('C', 'phi_C_A')]

FactorGraph to MarkovModel

In [19]: phi = Factor(['A', 'B', 'C'], [2, 2, 2],

np.random.rand(8))
In [20]: factor_graph = FactorGraph()
In [21]: factor_graph.add_nodes_from(['A', 'B', 'C', 'phi'])
In [22]: factor_graph.add_edges_from(

 [('A', 'phi'), ('B', 'phi'), ('C', 'phi')])
In [23]: mm_from_factor_graph = factor_graph.to_markov_model()
In [24]: mm_from_factor_graph.add_factors(phi)
In [24]: mm_from_factor_graph.edges()
Out[24]: [('B', 'A'), ('C', 'B'), ('C', 'A')]

Independencies in Markov networks
In the previous chapter, we saw how a Bayesian network structure encodes
independency conditions in it, and how observing variables affects the flow of
influence in the network. Similarly, in the case of Markov networks, the graph
structure encodes independency conditions. However, the flow of influence in a
Markov network stops as soon as any node is observed in that trail. This is quite
different from what we saw in the Bayesian network, where different structures
responded differently to the observation of the nodes.

Chapter 2

[45]

To understand this more formally, let H be a Markov network structure and
Z X⊆ be a set of observed variables. Then, the path 1 2 1... k kX X X X− is active
if and only if none of the iX for { }1,2,..., 1,i k k−ε are in Z.

In the case of Bayesian networks, we had the concept of local independencies, where
a variable is independent of all its non-descendants, given given its parents. We also
had global conditions which were implied by D-Separation. Similarly, in the case
of Markov networks, the independence conditions that we discussed earlier are the
global independencies in the network. Local independence conditions are a subset
of global conditions, but local independencies are also very important because they
allow us to focus on a much smaller part of the network.

There are two ways of looking at the local independencies in the case of a Markov
network. One way is to be intuitive and think that if two nodes X and Y are directly
connected, then there is no way of rendering them as independent. However, if they
are not directly connected, there is always a way of rendering them conditionally
independent of each other. One way to do this is by observing all the variables in the
network, except for X and Y. If we have all the nodes observed in the network except
X and Y, then there must be at least one observed node in the trail connecting the
nodes X and Y, which will eventually lead X and Y to be independent of each other.
This is known as pairwise independency. More formally, we can define pairwise
independency in a Markov network H as follows:

{ }(){ }() | ,pI H X Y X Yχ= ⊥ −

Another way of thinking about local independencies is to not let other nodes influence
a given node, by observing all of its neighboring nodes. This set of neighboring nodes
is known as the Markov blanket, and this type of independence in the network is
known as local independency. More formally, this can be defined as follows:

() () ()(){ }|l H HI H X X MB X MB Xχ= ⊥ − −

Like Bayesian networks, we also have the concept of I-Map in Markov models. For a
probability distribution P and a Markov network structure H if () ()I H I P⊆ , we say
that H is an I-Map of P.

Markov Network Fundamentals

[46]

Let's check the local independencies in the network using pgmpy:

In [1]: from pgmpy.models import MarkovModel
In [2]: mm = MarkovModel()
In [3]: mm.add_nodes_from(

 ['x1', 'x2', 'x3', 'x4', 'x5', 'x6', 'x7'])
In [4]: mm.add_edges_from(

 [('x1', 'x3'), ('x1', 'x4'), ('x2', 'x4'),

 ('x2', 'x5'), ('x3', 'x6'), ('x4', 'x6'),
 ('x4', 'x7'), ('x5', 'x7')])
In [5]: mm.get_local_independencies()
Out[5]:
(x3 _|_ x5, x4, x7, x2 | x6, x1)
(x4 _|_ x3, x5 | x6, x7, x1, x2)
(x1 _|_ x6, x7, x5, x2 | x3, x4)
(x5 _|_ x3, x4, x6, x1 | x7, x2)
(x7 _|_ x3, x6, x1, x2 | x5, x4)
(x2 _|_ x3, x6, x7, x1 | x5, x4)
(x6 _|_ x5, x7, x1, x2 | x3, x4)

We saw three different ways of defining independencies in Markov networks.
While all of these are related, they are equivalent only for positive distributions.
Non-positive distributions allow for deterministic dependencies between the
variables, and such deterministic interactions can allow us to construct networks
that are not I-maps of the distribution but local independencies hold for them.

Constructing graphs from distributions
To construct a Markov network from a distribution, the mere concept of I-Maps
is not enough. As in the case of Bayesian networks, a fully connected graph has
no independence conditions and, hence, it can be an I-Map of any probability
distribution. Therefore, we introduce the concept of the minimal I-Map in Markov
networks as well. To construct a minimal I-Map, we can use the local independency
conditions that we defined in the previous section.

In the first approach, let's consider the case of pairwise independencies. According to
pairwise independencies, if there is no edge between {X, Y}, then { }()| ,X Y X Yχ⊥ − .
Thus, at the very least, to guarantee that H is an I-map, we must add direct edges
between all pairs of nodes X and Y, such that they are dependent even on observing
all the other variables in the network.

Chapter 2

[47]

Similarly, we can get more information about the structure by using the local
independencies conditions. For each variable X, we can find the minimal set of nodes.
Observing these makes the variable independent of all the variables. Then, add an
edge between the variable and all the nodes in the set. In this way, exploiting local
independencies gives us a very basic methodology for constructing models from data.
In later chapters, we will discuss more sophisticated methods to create models.

Bayesian and Markov networks
Until now, we have discussed two different models for representing graphical
models. Each of these can represent independence constraints that the other cannot.
In this section, we will look at the relationship between these two models.

Converting Bayesian models into Markov
models
Both Bayesian models and Markov models parameterize a probability distribution
using a graphical model. Further, these structures also encode the independencies
among the random variable. So, when converting a Bayesian model into a Markov
one, we have to look from the following two perspectives:

• From the perspective of parameterization, that is, representing the
probability distribution of the Bayesian model BP using a fully
parameterized Markov model

• From the perspective of independencies, that is, representing the independence
constraints encoded by the Bayesian model using the Markov model

From the first perspective, conversion of the Bayesian model into the Markov
model is fairly simple. Let's begin by considering the case of a probability
distribution

BP , where B is a parameterized Bayesian network over a graph G. If
we see the parameterization of the Bayesian network, we can also think of it as a
parameterization of a Gibbs distribution. We can think of a CPD over a variable

iX
to be a factor with a scope { },i X iX Pa . This set of factors defines a Gibbs distribution
with the partition function being equal to 1.

Markov Network Fundamentals

[48]

Looking from the second perspective, let's try to find out what kind of undirected
graph would be an I-Map for this Gibbs distribution. To understand it more clearly,
let's go back to our previous Bayesian network example and try to convert it into a
Markov network:

Fig 2.5 Simple Bayesian model

Let's try to convert this Bayesian model into a Markov model simply by replacing
directed edges with undirected ones and start by replacing the edges (A, J) and
(R, J) with undirected edges. However, this representation has a problem. The
Markov Blanket of node A would be J. Thus, this representation asserts that
A would be independent of all the nodes in the model expect J, given J or specifically

|A R J⊥ . However, the Bayesian Network asserts the exact opposite of this,
that is, |A R J⊥ . Thus, it requires an additional undirected edge between A and R.
Similarly, replacing directed edges with undirected edges and adding extra edges
where required, we get the network in the following figure:

Chapter 2

[49]

Fig 2.6 Moral graph of Bayesian model represented in Fig 2.5

Hence, we can conclude that to convert a Bayesian model into a Markov model, we
need to do the following:

• Replace all the directed edges between the nodes with undirected edges
• Add additional undirected edges between nodes that are parents of the node

This new structure created by replacing directed edges and adding new edges
is known as the moral graph of the Bayesian network and is also known as the
moralization of the network.

We can see that the moral graph H of a Bayesian model G loses some information
regarding the independencies. For example, A R⊥ in the graph G, but not in H.
However, () ()I H I G⊆ , so we can say that H is an I-Map for this Gibbs distribution.
Note that moral graphs don't always lose information about the independencies. For
example, if there had been an edge between A and R already, then no information
regarding independencies would have been lost.

In pgmpy, a Bayesian model can be converted into a Markov model as follows:

In [1]: from pgmpy.models import BayesianModel
In [2]: from pgmpy.factors import TabularCPD

Creating the above bayesian network
In [2]: model = BayesianModel()
In [3]: model.add_nodes_from(['Rain', 'TrafficJam'])

Markov Network Fundamentals

[50]

In [4]: model.add_edge('Rain', 'TrafficJam')
In [5]: model.add_edge('Accident', 'TrafficJam')
In [6]: cpd_rain = TabularCPD('Rain', 2, [[0.4], [0.6]])
In [7]: cpd_accident = TabularCPD('Accident', 2, [[0.2], [0.8]])
In [8]: cpd_traffic_jam = TabularCPD(

 'TrafficJam', 2,

 [[0.9, 0.6, 0.7, 0.1],

 [0.1, 0.4, 0.3, 0.9]],

 evidence=['Rain', 'Accident'],

 evidence_card=[2, 2])
In [9]: model.add_cpds(cpd_rain, cpd_accident, cpd_traffic_jam)
In [10]: model.add_node('LongQueues')
In [11]: model.add_edge('TrafficJam', 'LongQueues')
In [12]: cpd_long_queues = TabularCPD('LongQueues', 2,

 [[0.9, 0.2],

 [0.1, 0.8]],
 evidence=['TrafficJam'],

 evidence_card=[2])
In [13]: model.add_cpds(cpd_long_queues)
In [14]: model.add_nodes_from(['GettingUpLate', 'LateForSchool'])
In [15]: model.add_edges_from([('GettingUpLate', 'LateForSchool'),

 ('TrafficJam', 'LateForSchool')])
In [16]: cpd_getting_up_late = TabularCPD('GettingUpLate', 2,

 [[0.6], [0.4]])
In [17]: cpd_late_for_school = TabularCPD(

 'LateForSchool', 2,

 [[0.9, 0.45, 0.8, 0.1],

 [0.1, 0.55, 0.2, 0.9]],

 evidence=['GettingUpLate',TrafficJam'],

 evidence_card=[2, 2])
In [18]: model.add_cpds(cpd_getting_up_late, cpd_late_for_school)

Conversion from BayesianModel to MarkovModel is accomplished by

In [19]: mm = model.to_markov_model()

Chapter 2

[51]

In [20]: mm.edges()
Out[20]:
[('TrafficJam', 'Accident'),
 ('TrafficJam', 'LongQueues'),
 ('TrafficJam', 'LateForSchool'),
 ('TrafficJam', 'Rain'),
 ('TrafficJam', 'GettingUpLate'),
 ('LateForSchool', 'GettingUpLate'),
 ('Accident', 'Rain')]

Converting Markov models into Bayesian
models
The conversion of a Markov model into a Bayesian model is not as simple as the case
of converting a Bayesian model into a Markov model.

Let's start with our simple Markov model example and try to convert it into a Bayesian
model. In this section, we will be looking from the perspective of independencies, that
is, finding a Bayesian model that is an I-Map of the corresponding Markov model:

Fig 2.7(a) Markov model

Fig 2.7(b) Bayesian model formed by changing the directed edges into undirected ones

Markov Network Fundamentals

[52]

We can simply replace all the undirected edges in the Markov model (Fig 2.7(a))
with directed edges (Fig 2.7(b)). However, does this Bayesian model encode all the
independencies of the corresponding Markov model? Before getting into this, let's
take a more simple example of the Markov model formed by removing the node C:

Fig 2.8(a) Markov model formed by removing node C

Fig 2.8(b) Bayesian model formed by changing the directed edges into undirected ones

Fig 2.8(a) represents a Markov model formed by removing the node C. Fig 2.8(b) is
formed just by converting the undirected edges into directed edges. The Markov
model encodes the independence assertion that |B D A⊥ , which is also encoded in
the corresponding Bayesian model. So, the Bayesian model formed is a perfect I-Map
of the Markov model. Now, let's go back to our previous example and examine the
independencies encoded in both, the Markov model and the Bayesian model formed
simply by converting undirected edges into directed ones.

The Markov model H encodes | ,B D A C⊥ , but the corresponding Bayesian
model G encodes |B D A⊥ , which is not true for H, where |B D A⊥ . So, for G to
be an I-Map for H, there should be a directed edge between B and D. However, why
did simply converting the undirected edges into direct edges not suffice as in the
example in Fig 2.8?

We can see that the example in Fig 2.7 is a non-triangulated (non-chordal) graph.
A triangulated or chordal graph is a graph in which each of its cycles of four or
more vertices has a chord (an edge that is not part of the cycle but connects two
vertices of the cycle). By simply converting edges of a non-triangulated graph into
directed ones, we introduce immoralities. An immorality is a v-structure
(X Z Y→ ←), if there is no directed edge between X and Y. So why does the
introduction of immorality pose an issue? To get the answer to this question, let's
look at the example again. Before the introduction of immorality or conversion of
edges into directed ones, we had |B D A⊥ , but after the addition of immorality,
we had |B D A⊥ .

Chapter 2

[53]

So, we can conclude that the process of converting a Markov models to a Bayesian
model requires us to add edges to the network to make it chordal. This process is
known as triangulation.

In pgmpy, we can convert a Markov model into a Bayesian model in the following way:

In [1]: from pgmpy.models import MarkovModel
In [2]: from pgmpy.factors import Factor
In [3]: model = MarkovModel()

Fig 2.7(a) represents the Markov model
In [4]: model.add_nodes_from(['A', 'B', 'C', 'D'])
In [5]: model.add_edges_from([('A', 'B'), ('B', 'C'),
 ('C', 'D'), ('D', 'A')])

Adding some factors.
In [6]: phi_A_B = Factor(['A', 'B'], [2, 2], [1, 100, 100, 1])
In [7]: phi_B_C = Factor(['B', 'C'], [2, 2], [100, 1, 1, 100])
In [8]: phi_C_D = Factor(['C', 'D'], [2, 2], [1, 100, 100, 1])
In [9]: phi_D_A = Factor(['D', 'A'], [2, 2], [100, 1, 1, 100])
In [10]: model.add_factors(phi_A_B, phi_B_C, phi_C_D, phi_D_A)
In [11]: bayesian_model = model.to_bayesian_model()
In [12]: bayesian_model.edges()
Out[12]: [('D', 'C'), ('D', 'B'), ('D', 'A'),
 ('B', 'C'), ('B', 'A')]

Chordal graphs
As we have seen, in the case of converting a Bayesian model into a Markov model,
we lost some of the independence conditions. The same holds true in this case as
well, and we can see from the example that we lose the following conditions:

• Statistical independence between parents of the same node in a Bayesian
network is lost when it is converted into a Markov one due to the
introduction of immorality

• Addition of extra edges to convert a Markov model into a Bayesian one leads
to the loss of local independence information

We also see that for the perfect conversion of the model, we must have a chordal
graph. The process of converting a non-chordal graph into a chordal one is called
triangulation. A triangulated graph can be obtained from an undirected graph by
adding links.

Markov Network Fundamentals

[54]

In pgmpy, we can triangulate a graph as follows:

In [1]: from pgmpy.models import MarkovModel
In [2]: from pgmpy.factors import Factor
In [3]: import numpy as np
In [4]: model = MarkovModel()

Fig 2.7(a) represents the MarkovModel
In [6]: model.add_nodes_from(['A', 'B', 'C', 'D'])
In [7]: model.add_edges_from(
 [('A', 'B'), ('B', 'C'), ('C', 'D'), ('D', 'A')])

Adding some factors
In [8]: phi_A_B = Factor(['A', 'B'], [2, 2], [1, 100, 100, 1])
In [9]: phi_B_C = Factor(['B', 'C'], [2, 2], [100, 1, 1, 100])
In [10]: phi_C_D = Factor(['C', 'D'], [2, 2], [1, 100, 100, 1])
In [11]: phi_D_A = Factor(['D', 'A'], [2, 2], [100, 1, 1, 100])
In [12]: model.add_factors(phi_A_B, phi_B_C, phi_C_D, phi_D_A)
In [13]: chordal_graph = model.triangulate()

Fig 2.9 represents the chordal graph created by triangulation
In [14]: chordal_graph.edges()
Out[14]: [('C', 'D'), ('C', 'B'), ('D', 'B'),
 ('D', A'), ('A, 'B')]

The following is the chordal graph formed by triangulating the Markov model:

Fig 2.9 Chordal graph

Chapter 2

[55]

There are six heuristics presented in Heuristic Algorithms for the Triangulation of Graphs
by Andres Cano and Serafn Moral to add links in an undirected graph to triangulate
it. The detailed explanation of these heuristics is beyond the scope of this book
(for a detailed explanation, you can go through this paper). These heuristics are also
implemented in pgmpy in the following way:

For creating a chordal graph using first heuristic there are six
heuristics that are implemented in pgmpy and can be used by
passing the keyword argument heuristic as H1, H2, H3, H4, H5, H6
In [15]: chordal_graph = model.triangulate(heuristic='H1')

If no heuristics are provided, H6 must be used by default.

Summary
In this chapter, we saw how we are not able to use a Bayesian model to model a
problem in some cases. In some of these problems, we can use an undirected graph
to represent the relation between the variables. These undirected graphs, along
with a set of factors representing interaction between these random variables, are
known as Markov networks. We discussed the various independencies encoded by a
Markov network: local, pairwise, and global. Also, we saw that in a Markov network,
the influence stops flowing as soon as we observe any node in that trail, which
is quite different from the case of a Bayesian network, where different network
structures imply a different flow of influence. We also discussed the concepts of
I-Maps and minimal I-Maps that helped us understand when and how to encode a
joint probability distribution in a graph structure. We also discussed the relationship
between a Bayesian network and a Markov network.

In these first two chapters, we mainly discussed the representation and various
properties of Bayesian and Markov models. In the next chapter, we will discuss how
to infer the probability values of the different variables when the model is conditioned
over some other variables, which would be much like getting predictions for variables
for new data points as we do in normal machine learning techniques.

[57]

Inference – Asking

Questions to Models

In the previous chapters, we looked at the different types of models and how to
create models for our problems. We also saw how the probabilities of variables
change when we change the probabilities of some other variables. In this chapter, we
will be discussing the various algorithms that can be used to compute these changes
in the probabilities. We will also see how to use these inference algorithms to predict
the values of variables of new data points based on our model, which was trained
using our previous data.

In this chapter, we will cover:

• Using inference to answer queries about the model
• Variable elimination
• Understanding the belief propagation algorithm using a clique tree
• MAP inference using variable elimination
• MAP inference using belief propagation
• Comparison between variable elimination and belief propagation

Inference
Inferring from a model is the same as finding the conditional probability distribution
over some variables, that is, P Y E e| =() , where Y ⊆ χ and E ⊂ χ . Also, if we
think about predicting values for a new data point, we are basically trying to find
the conditional probability of the unknown variable, given the observed values of
other variables. These conditional distributions can easily be computed from the joint
probability distribution of the variables, by marginalizing and reducing them over
variables and states.

Inference – Asking Questions to Models

[58]

Fig 3.1: The restaurant model

Let's consider the restaurant example once again, as shown in the preceding
figure. We can think of various inference queries that we can try on the model.
For example, we may want to find the probability of the quality of a restaurant
being good, given that the location is good, the cost is high, and the number
of people coming is also high, which would result in the probability query
P Q good L= good,C high,N high= = =()| . Also, if we think of a machine learning problem,
where we want to predict the number of people coming to a restaurant given other
variables, it would simply be an inference query over the model, and the state having
higher probability would be the prediction by the model. Now, let's see how we can
compute these conditional probabilities from the model.

From the product rule of probability, we know the following:

P Y | E = e P Y e
P e

() (,)
()

=

Chapter 3

[59]

So, to find each value of the distribution P(Y, e), we could simply do a summation of
the joint probability distribution over the variables W Y E= − −χ :

() ()
w

P y,e P y,e,w=∑

Now, to find P(e), we can simply do another summation over P y,e() , which we just
computed:

() (),
y

P e P y e=∑

Using these values of P y,e() and P(e), we can easily find the value of P y e|() as
follows:

P y e
P y e
P e

|
,() = ()
()

Performing a similar calculation for each state y of the random variable Y, we can
calculate the conditional distribution over Y, given E = e.

Complexity of inference
In the previous section, we saw how we can find the conditional distributions
over variables when a joint distribution is given. However, computing the joint
probability distribution will give us an exponentially large table, and avoiding these
huge tables was the whole point of introducing probabilistic graphical models.
We will be discussing the various algorithms that can help us avoid the complete
probability distributions while computing the conditional distribution, but first,
let's see what the complexity of computing these inferences is.

If we think about the worst case scenario, we cannot avoid the exponential size of
the tables in graphical models, which makes inference an NP-hard problem, and
unfortunately, even the approximate methods to compute conditional distributions
are NP-hard. Proofs of these results are beyond the scope of this book.

However, these results are for the worst case scenario. In real life, we don't always
have the worst case. So, let's discuss various algorithms for the inference.

Inference – Asking Questions to Models

[60]

Variable elimination
Let's try to do some inference tasks over the restaurant network in Fig 3.1. Let's say
we want to find P(C). We know the following from the chain rule of probability:

() () ()
,

|
l q

P C P C l,q P l,q=∑

Also, we know that the random variables L and Q are independent of each other if C
is not observed. So, we can write the preceding equation as follows:

() () () ()
,

|
l q

P C P C l,q P l P q=∑

Now, we can see that we know the probability values involved in the product for the
computation of P(C). We have the values of P C l,q|() from the CPD of C, the values
of P(l) from the CPD of L, and the values of P(q) from the CPD of Q. Summing up the
product of these probabilities, we can easily find the probability of C.

We can also note that the computational cost for this computation would be
, where Val X() represents the number of states of the

variable X. We can see that in order to compute the probability of each state of C,
we need to compute the product for each combination of states L and Q, and then
add them together. This means that for each state of C, we have 2∗ ()∗ ()Val L Val P
products and Val L Val Q()∗ ()()−1 additions. Here, 2 appears in the number of
products because there are two product operations in the equation. Also, we need to
do this computation Val C() times for each state of C.

Now, let's take the example of another simple model A B C D→ → → and try to
find P(D). We can find P(D) simply as follows:

() () () () ()
, ,

| | |
a b c

P D P a P b a P c b P D c∑

However, we can see that the complexity of computing the values of P(D) is
now , and for much more complex models, our
complexity will be too high. Now, let's see how we can use the concept of dynamic
programming to avoid computing the same values multiple times and to reduce our
complexity. To see the scope of using dynamic programming in this problem, let's
first simply unroll the summation and check what values we are computing. For
simplicity, we will assume that each of the variables has only two states. Unrolling
the summation, we get the following:

Chapter 3

[61]

P d 0() = = P a P b a P c b P d c0 0 0 0 0 0 0() () () () +| | |

P a P b a P c b P d c0 0 0 1 0 0 1() () () () +| | |

P a P b a P c b P d c0 1 0 0 1 0 0() () () () +| | |

P a P b a P c b P d c0 1 0 1 1 0 1() () () () +| | |

P a P b a P c b P d c1 0 1 0 0 0 0() () () () +| | |

P a P b a P c b P d c1 0 1 1 0 0 1() () () () +| | |

P a P b a P c b P d c1 1 1 0 1 0 0() () () () +| | |

P a P b a P c b P d c1 1 1 1 1 0 1() () () ()| | |

P d1() = P a P b a P c b P d c0 0 0 0 0 1 0() () () () +| | |

P a P b a P c b P d c0 0 0 1 0 1 1() () () () +| | |

P a P b a P c b P d c0 1 0 0 1 1 0() () () () +| | |

P a P b a P c b P d c0 1 0 1 1 1 1() () () () +| | |

P a P b a P c b P d c1 0 1 0 0 1 0() () () () +| | |

P a P b a P c b P d c1 0 1 1 0 1 1() () () () +| | |

P a P b a P c b P d c1 1 1 0 1 1 0() () () () +| | |

P a P b a P c b P d c1 1 1 1 1 1 1() () () ()| | |

Inference – Asking Questions to Models

[62]

To calculate P(D), we must calculate P d 0() = and P d1() = separately. After
unrolling the summations, we can see that we have many computations that
we have been doing multiple times if we take the simple linear approach. In the
preceding equations, we can see that we have computed P a P b a0 0 0()∗ ()| four times,
P a P b a0 1 0()∗ ()| four times, and so on. Let's first group these computations together:

P d 0() =

P a P b a P a P b a P c b P d c0 0 0 1 0 1 0 0 0 0() () + () () () () +| | | |

P a P b a P a P b a P c b P d c0 0 0 1 0 1 1 0 0 1() () + () () () () +| | | |

P a P b a P a P b a P c b P d c0 1 0 1 1 1 0 1 0 0() () + () () () () +| | | |

P a P b a P a P b a P c b P d c0 1 0 1 1 1 1 1 0 1() () + () () () ()| | | |

P d1() =

P a P b a P a P b a P c b P d c0 0 0 1 0 1 0 0 1 0() () + () () () () +| | | |

P a P b a P a P b a P c b P d c0 0 0 1 0 1 1 0 1 1() () + () () () () +| | | |

P a P b a P a P b a P c b P d c0 1 0 1 1 1 0 1 1 0() () + () () () () +| | | |

P a P b a P a P b a P c b P d c0 1 0 1 1 1 1 1 1 1() () + () ()() () ()| | | |

Now, replace these with symbols that we will compute only once and use
them everywhere. Replacing P a P b a P a P b a0 0 0 1 0 1() () + ()∗ ()| | with τ1 0b() and
P a P b a P a P b a0 1 0 1 1 1() () + ()∗ ()| | with τ1 1b() , we get:

P d 0() =

τ1
0 0 0 0 0b P c b P d c() () () +| |

τ1

0 1 0 0 1b P c b P d c() () () +| |

τ1

1 0 1 0 0b P c b P d c() () () +| |

τ1

1 1 1 0 1b P c b P d c() () ()| |

P d1() =

τ1
0 0 0 1 0b P c b P d c() () () +| |

τ1

0 1 0 1 1b P c b P d c() () () +| |

Chapter 3

[63]

τ1

1 0 1 1 0b P c b P d c() () () +| |

τ1

1 1 1 1 1b P c b P d c() () () +| |

Again, grouping common parts together, we get:

P d 0() =

τ τ1
0 0 0

1
1 0 1 0 0b P c b b P c b P d c() () + () ()() () +| | |

τ τ1

0 1 0
1

1 1 1 0 1b P c b b P c b P d c() () + () ()() ()| | |

P d1() =

τ τ1
0 0 0

1
1 0 1 1 0b P c b b P c b P d c() () + () ()() () +| | |

τ τ1

0 1 0
1

1 1 1 1 1b P c b b P c b P d c() () + () ()() ()| | |

Now, replacing τ τ1
0 0 0

1
1 0 1b P c b b P c b()∗ () + ()∗ ()| | with τ 2 0c() and replacing

τ τ1
0 1 0

1
1 1 1b P c b b P c b()∗ () + ()∗ ()| | with τ 2 1c() , we get:

P d 0() =

τ 2
0 0 0c P d c() () +|

τ 2

1 0 1c P d c() ()|

P d1() =

τ 2
0 1 0c P d c() () +|

τ 2

1 1 1c P d c() ()|

Notice how, instead of doing a summation over the complete product of
P a P b a P c b P d c() () () ()| | | here, we did the summation over parts of it:

() () () () ()| | |
a b c

P D P a P b a P c b P D c=∑∑∑

() () () () ()| | |
c b a

P D P D c P c b P a P b a=∑ ∑ ∑

Here, we have been able to push the summations inside the equation because not all
the terms in the equation have all the variables. So, only the terms P(a) and P(b|a)
depend on A. So we can simply sum them over the values of A.

Inference – Asking Questions to Models

[64]

To make things clearer, let's see another run of variable elimination on the restaurant
model:

Step Variable
eliminated

Factors involved Intermediate
factor

New factor

1 L φ φ φL L C Q L C N() () (), , , , , , / ()υ1 L C Q N, , , ()1 , ,C Q Nτ

2 Q φ τQ C Q N() (), , ,1 / ()υ2 C N Q, , τ 2 C N,()

3 C τ 2 C N,() / ()υ3 C N, τ3 N()

4 N τ3 N() / ()υ4 N τ θ4 ()

This method helps us to significantly reduce the computation required to compute
the probabilities. In this case, we just need to compute τ1 B() , which requires two
multiplications and two additions, and τ 2 C() , which requires four multiplications
and two additions. We can then compute P(D). Hence, we just need a total of 12
computations to compute P(D). However, in the case of computing P(D) from the
joint probability distribution, we require 16 * 3 = 48 multiplications and 14 additions.
Hence, we see that using variable elimination brings about huge improvement in the
complexity of making the inference.

Now, let's see how to make the inference using variable elimination with pgmpy:

In [1]: from pgmpy.models import BayesianModel
In [2]: from pgmpy.inference import VariableElimination
In [3]: from pgmpy.factors import TabularCPD

Now first create the model.
In [3]: restaurant = BayesianModel(
 [('location', 'cost'),
 ('quality', 'cost'),
 ('cost', 'no_of_people'),
 ('location', 'no_of_people')])
In [4]: cpd_location = TabularCPD('location', 2, [[0.6, 0.4]])
In [5]: cpd_quality = TabularCPD('quality', 3, [[0.3, 0.5, 0.2]])
In [6]: cpd_cost = TabularCPD('cost', 2,
 [[0.8, 0.6, 0.1, 0.6, 0.6, 0.05],
 [0.2, 0.1, 0.9, 0.4, 0.4, 0.95]],
 ['location', 'quality'], [2, 3])
In [7]: cpd_no_of_people = TabularCPD(
 'no_of_people', 2,
 [[0.6, 0.8, 0.1, 0.6],
 [0.4, 0.2, 0.9, 0.4]],
 ['cost', 'location'], [2, 2])

Chapter 3

[65]

In [8]: restaurant.add_cpds(cpd_location, cpd_quality,
 cpd_cost, cpd_no_of_people)

Creating the inference object of the model
In [9]: restaurant_inference = VariableElimination(restaurant)

Doing simple queries over one or multiple variables.
In [10]: restaurant_inference.query(variables=['location'])
Out[10]: {'location': <Factor representing phi(location:2) at
 0x7fea25e02898>}
In [11]: restaurant_inference.query(
 variables=['location', 'no_of_people'])
Out[11]: {'location': <Factor representing phi(location:2) at
 0x7fea25e02b00>,
 'no_of_people': <Factor representing phi(no_of_people:2)
 at 0x7fea25e026a0>}

We can also specify the order in which the variables are to be
eliminated. If not specified pgmpy automatically computes the
best possible elimination order.
In [12]: restaurant_inference.query(variables=['no_of_people'],
 elimination_order=['location', 'cost', 'quality'])
Out[12]: {'no_of_people': <Factor representing phi(no_of_people:2)
 at 0x7fea25e02160>

We saw the case of making an inference when no condition was given. Now,
let's take a case where some evidence is given; let's say we know that the cost
of the restaurant is high and we want to compute the probability of the number
of people in the restaurant. Basically, we want to compute P N c| 1() . For this, we could
simply use the probability theory and first compute P N c, 1() and then normalize this
over N again to get P c1() and then compute P N c, 1() as:

P N c
P N c
P c

|
,1
1

1() = ()
()

Now, the question is, how do we compute P N c| 1()? We first reduce all the factors
involving C to c1 and then do our normal variable elimination.

In pgmpy, we can simply pass another argument to the query method for evidence.
Let's see how to find P N c| 1() using pgmpy:

If we have some evidence for the network we can simply pass it
as an argument to the query method in the form of
{variable: state}
In [13]: restaurant_inference.query(variables=['no_of_people'],
 evidence={'location': 1})

Inference – Asking Questions to Models

[66]

Out[13]: {'no_of_people': <Factor representing phi(no_of_people:2)
 at 0x7fea25e02588>}
In [14]: restaurant_inference.query(
 variables=['no_of_people'],
 evidence={'location': 1, 'quality': 1})
Out[14]: {'no_of_people': <Factor representing phi(no_of_people:2)
 at 0x7fea25e02d30>}
In this case also we can simply pass the elimination order for
the variables.
In [15]:restaurant_inference.query(
 variables=['no_of_people'],
 evidence={'location': 1},
 elimination_order=['quality', 'cost'])
Out[15]: {'no_of_people': <Factor representing phi(no_of_people:2)
 at 0x7fea25e02eb8>}

Analysis of variable elimination
We have already seen that variable elimination is much more efficient for
calculating probability distributions than normalizing and marginalizing the joint
probability distribution. Now, let's do an exact analysis to find the complexity of
variable elimination.

Let's start by putting the variable elimination algorithm in simple terms. In variable
elimination, we start by choosing a variable

iX , then we compute the factor product
/υ j for all the factors involving that variable, and then eliminate that variable by

summing it up, resulting in a new factor τ i whose scope is (){ }i iScope Xυ −/ .

Now, let's consider that we have a network with n variables and m factors. In the case
of a Bayesian network, the number of CPDs will always be equal to the number of
variables, therefore, m = n for a Bayesian network. However, in the case of a Markov
network, the number of factors can be more than the number of variables in the network.
For simplicity, let's assume that we will be eliminating all the variables in the network.

In variable elimination, we have been performing just two types of operations,
multiplication and addition. So, to find the overall complexity, let's start by counting
these operations. For the multiplication step, we multiply each of the initial m
factors and the intermediately formed n factors exactly once. So, the total number of
multiplication steps would be () im n N+ , where

iN is the size of the intermediate
factor /υ j . Also, let's define max i iN max N= . Therefore, () ()i maxm n N m n N+ ≤ +
will always be true. Now, if we calculate the total number of addition operations,
we will be iterating over each of the /υ j once, resulting in a total of maxnN addition
operations. So, we see that the total number of operations for Variable Elimination
comes out to be () max maxm n N nN+ + . Hence, the complexity of the overall operation
is ()maxO mN , because n m≤ .

Chapter 3

[67]

Now, let's try to analyze the variable elimination algorithm using the graph
structure. We can treat a Bayesian model as a Markov model having undirected
edges between all the variables in each of the CPD defining the parameters of
the network. Now, let's try to see what happens when we run variable elimination
over this network. We choose any variable X and multiply all other factors
involving that factor X, resulting in a factor /υ with the scope X neigh X∪ () .
After this, we eliminate the variable X and have a resulting factor τ with scope
neigh X() = Y . Now, as we have a factor with scope Y, we need to have edges in the
network between each of the variables in Y. So, we add extra edges to the network,
which are known as fill edges. For the elimination of the next variable, we use this
new network structure and perform similar operations on it.

Let's see an example on our late-for-school model showing the graph structure
during the various steps of variable elimination:

Fig 3.2(a): Initial state of the network

Fig 3.2(b): After eliminating Traffic Accident (A)

Fig 3.2(c): After eliminating Heavy Rain (R)

Fig 3.2(d): After eliminating Traffic Jam (J)

Inference – Asking Questions to Models

[68]

Fig 3.2(e): After eliminating Long Queues (Q)

Fig 3.2(f): After eliminating Getting Up Late (G)

An induced graph is also defined as the undirected graph constructed by the union
of all the graphs formed in each step of variable elimination on the network.
Fig 3.3 shows the induced graph for the preceding variable elimination:

Fig 3.3: The induced graph formed by running the preceding variable elimination

Chapter 3

[69]

We can also check the induced graph using pgmpy:

In [16]: induced_graph = restaurant_inference.induced_graph(
 ['cost', 'location', 'no_of_people', 'quality'])
In [17]: induced_graph.nodes()
Out[17]: ['location', 'quality', 'cost', 'no_of_people']
In [18]: induced_graph.edges()
Out[18]:
[('location', 'quality'),
 ('location', 'cost'),
 ('location', 'no_of_people'),
 ('quality', 'cost'),
 ('quality', 'no_of_people'),
 ('cost', 'no_of_people')]

Finding elimination ordering
In variable elimination, the order in which we eliminate the variables has a huge
impact on the computational cost of running the algorithm. Let's look at the difference
in the elimination ordering on the late-for-school model. The steps of variable
elimination with the elimination order A, G, J, L, Q, R are shown in the following table:

Step Variable
eliminated

Factors involved Intermediate
factors

New factor

1 A φ φA J A R() (), , , / ()υ1 J A R, , τ1 J R,()
2 G φ φG L J G() (), , , / ()υ2 J L G, , τ 2 J L,()
3 J φ τ τQ J J R J L, , , , ,() () ()1 2 / ()υ3 Q,R L J, , τ3 Q,R L,()
4 L τ3 Q,R L,() / ()υ4 Q,R L, τ 4 Q,R()
5 Q τ 4 Q,R() / ()υ5 Q,R τ5 R()
6 R φ τR R() (), 5 / ()υ6 R τ θ6 ()

Inference – Asking Questions to Models

[70]

The steps of variable elimination with the elimination order R, Q, L, J, G, A are shown
in the following table:

Step Variable
eliminated

Factors involved Intermediate
factors

New factor

1 R φ φR J A R() (), , , / ()υ1 J A R, , (),i J Aτ

2 Q φ Q J,() / ()υ2 Q J, τ 2 J()
3 L φ L J G, ,() / ()υ3 L J G, , τ3 J G,()
4 J τ τ τ1 2 3J A J J G, , , ,() () () / ()υ4 J A G, , τ 4 A G,()
5 G φ τG A G() (), ,4 / ()υ5 A G, τ5 A()
6 A φ τA A() (), 5 / ()υ6 A τ θ6 ()

For every intermediate factor, we add filled edges between all the variables in their
scope, so we can say that every intermediate factor introduces a clique in the induced
graph. Hence, the scope of every intermediate factor generated during the variable
elimination process is a clique in the induced graph. Also, notice that every maximal
clique in the induced graph is the scope of some intermediate factor generated
during the variable elimination process. Therefore, having a larger maximal clique
in the induced graph also means having a larger intermediate factor, which means
higher computation cost.

Let's see a few definitions related to induced graphs:

• Width: This is defined as the number of nodes in the largest clique of the
graph minus 1

• Induced width: This is defined as the width of an induced graph over some
network, given an elimination ordering

• Tree width: The tree width of a network is defined as its minimal induced
width

We have seen how the computation complexity of the variable elimination operation
relates to the choice of elimination order, and how this relates to the tree width of
the induced graph. A smaller tree width ensures a better complexity compared to an
elimination order with a higher tree width. So, our problem has now been reduced to
selecting an elimination order that keeps the tree width minimal.

Chapter 3

[71]

Unfortunately, finding the elimination for the minimal tree width is NP -complete, so
there is no easy way to find the complexity of the inference over a network by simply
looking at the network structure. However, there are many other techniques that we
can use to find good elimination orderings.

Using the chordal graph property of induced graphs
We define a graph as being chordal if it contains no cycle of length greater than three,
and if there are no edges between two nonadjacent nodes of each cycle. In other
words, every minimal cycle in a chordal graph is three in length.

Now, if you look carefully, you will see that every induced graph is a chordal graph.
Also, the converse of this theorem holds, that every chordal graph on these variables
corresponds to some elimination ordering. The proof of both of these theorems is
beyond the scope of this book.

So, to find the elimination order, we use the maximum cardinality search algorithm.
In this algorithm, we basically iterate χ times, and in each iteration, we try to
find the variable with the largest number of marked variables and then mark that
variable. This results in elimination ordering.

Minimum fill/size/weight/search
Another approach to find elimination ordering is to take the greedy approach and, in
each step, select a variable that seems to be the best option for that step. So, for each
iteration, we compute a cost function to eliminate each of the nodes and select the
node that results in the minimum cost. Some of the cost criteria are as follows:

• Min-neighbors: The cost of a node is defined by the number of neighbors it
has in the graph.

• Min-weight: The cost of a node is the product of the cardinality of its neighbors.
• Min-fill: The cost of node elimination is the number of edges that need to be

added to the graph for the elimination of that node.
• Weighted-min-fill: The cost of node elimination is the sum of the weights of

the edges that need to be added to the graph for its elimination. The weight of
an edge is defined as the product of the weights of the nodes between which
it lies.

Here, we have seen two different approaches to finding good elimination ordering.
The second heuristic approach of going the greedy way doesn't seem to be a very
good approach to get globally optimized elimination ordering. However, it turns
out that it gives very good results in most of the cases as compared to our maximum
cardinality search algorithm.

Inference – Asking Questions to Models

[72]

Belief propagation
In the previous section, we saw that the basic operation of the variable elimination
algorithm is the manipulation of the factors. First, we create a factor /υ j by
multiplying existing factors. Then, we eliminate a variable in /υ j to generate a new
factor τ i , which is then used to create another factor. From a different perspective, we
can say that a factor /υ j is a data structure, which takes messages τ j generated by the
other factor /υ j , and generates a message /υ j which is used by the other factor /υl .

Clique tree
Before we go into a detailed discussion of the belief propagation algorithm, let's
discuss the graphical model that provides the basic framework for it, the clique tree,
also known as the junction tree.

The clique tree (τ) is an undirected graph over a set of factors Φ , where each node
represents a cluster of random variables and the edges connect the clusters, whose
scope has a nonempty intersection. Thus, each edge between a pair of clusters iC
and jC is associated with a sepset ,i j i jS C C⊆ ∩ . For each cluster iC , we also define
the cluster potential /υ j , which is the factor representing all the variables present in
it.

This can be generalized. Let's assume there is a variable X, such that
iX Cε and

jX Cε . Then, X is also present in every cluster in the path between iC and jC in τ
. This is known as the running intersection property. We can see an example in the
following figure:

Fig 3.4: A simple cluster tree with clusters C A B C1 ={ }, , and C C D2 ={ }, . The sepset
associated with the edge is S C1 2, ={ } .

Chapter 3

[73]

In pgmpy, we can define a clique tree or junction tree in the following way:

Firstly import JunctionTree class
In [1]: from pgmpy.models import JunctionTree
In [2]: junction_tree = JunctionTree()

Each node in the junction tree is a cluster of random variables
represented as a tuple
In [3]: junction_tree.add_nodes_from([('A', 'B', 'C'),
 ('C', 'D')])
In [4]: junction_tree.add_edge(('A', 'B', 'C'), ('C', 'D'))

In [5]: junction_tree.add_edge(('A', 'B', 'C'), ('D', 'E', 'F'))
 ValueError: No sepset found between these two edges.

As discussed previously, the junction tree contains
undirected edges only between those clusters whose
scope has a non empty intersection. So, if we try to add
any edge between two nodes whose scope has an empty
intersection, it will raise ValueError.

Constructing a clique tree
In the previous section on variable elimination, we saw that an induced graph
created by variable elimination is a chordal graph. The converse of it also holds true;
that is, any chordal graph can be used as a basis for inference.

We previously discussed chordal graphs, triangulation techniques (the process
of constructing a chordal graph that incorporates an existing graph), and their
implementation in pgmpy. To construct a clique tree from the chordal graph, we need
to find the maximal cliques in it. There are multiple ways of doing this. One of the
simplest methods is the maximum cardinality search (which we discussed in the
previous section) to obtain maximal cliques.

Then, these maximal cliques are assigned as nodes in the clique tree. Finally, to
determine the edges of the clique tree, we use the maximum spanning tree algorithm.
We build an undirected graph whose nodes are maximal cliques in H , where every
pair of nodes iC , jC is connected by an edge whose weight is i jC C∩ . Then, by
applying the maximum spanning tree algorithm, we find a tree in which the weight
of edges is at maximum.

Inference – Asking Questions to Models

[74]

The cluster potential for each cluster in the clique tree can be computed as the
product of the factors associated with each node of the cluster. For example, in
the following figure, /υ1 (the cluster potential associated with cluster (A, B, C)
is computed as the product of P(A), P(C), and P B A,C|() . To compute /υ2 (the
cluster potential associated with (B, D, E), we use P E B,D|() , P(B), and P(D). P(B)
is computed by marginalizing P B A,C|() with respect to A and C.

Fig 3.5: The cluster potential of the clusters present in the clique tree

These steps can be summarized as follows:

1. Triangulate the graph G over factor Φ to create a chordal graph HΦ
.

2. Find the maximal cliques in HΦ
 and assign them as nodes to an

undirected graph.
3. Assign weights to the edges between two nodes of the undirected graph as

the numbers of elements in the sepset of the two nodes.
4. Construct the clique tree using the maximum spanning tree algorithm.
5. Compute the cluster potential for each cluster as the product of factors

associated with the nodes present in the cluster.

In pgmpy, each graphical model class has a method called to_junction_tree(),
which creates a clique tree (or junction tree) corresponding to the graphical model.
Here's an example:

In [1]: from pgmpy.models import BayesianModel, MarkovModel
In [2]: from pgmpy.factors import TabularCPD, Factor

Create a bayesian model as we did in the previous chapters
In [3]: model = BayesianModel(
 [('rain', 'traffic_jam'),
 ('accident', 'traffic_jam'),
 ('traffic_jam', 'long_queues'),
 ('traffic_jam', 'late_for_school'),
 ('getting_up_late', 'late_for_school')])

Chapter 3

[75]

In [4]: cpd_rain = TabularCPD('rain', 2, [[0.4], [0.6]])
In [5]: cpd_accident = TabularCPD('accident', 2, [[0.2], [0.8]])
In [6]: cpd_traffic_jam = TabularCPD(
 'traffic_jam', 2,
 [[0.9, 0.6, 0.7, 0.1],
 [0.1, 0.4, 0.3, 0.9]],
 evidence=['rain', 'accident'],
 evidence_card=[2, 2])
In [7]: cpd_getting_up_late = TabularCPD('getting_up_late', 2,
 [[0.6], [0.4]])
In [8]: cpd_late_for_school = TabularCPD(
 'late_for_school', 2,
 [[0.9, 0.45, 0.8, 0.1],
 [0.1, 0.55, 0.2, 0.9]],
 evidence=['getting_up_late',
 'traffic_jam'],
 evidence_card=[2, 2])
In [9]: cpd_long_queues = TabularCPD('long_queues', 2,
 [[0.9, 0.2],
 [0.1, 0.8]],
 evidence=['traffic_jam'],
 evidence_card=[2])
In [10]: model.add_cpds(cpd_rain, cpd_accident,
 cpd_traffic_jam, cpd_getting_up_late,
 cpd_late_for_school, cpd_long_queues)
In [11]: junction_tree_bm = model.to_junction_tree()
In [12]: type(junction_tree_bm)
Out[12]: pgmpy.models.JunctionTree.JunctionTree

In [13]: junction_tree_bm.nodes()
Out[13]:
[('traffic_jam', 'getting_up_late', 'late_for_school'),
 ('traffic_jam', 'rain', 'accident'),
 ('traffic_jam', 'long_queues')]

In [14]: junction_tree_bm.edges()
Out[14]:
[(('traffic_jam', 'long_queues'),
 ('traffic_jam', 'late_for_school', 'getting_up_late')),
 (('traffic_jam', 'long_queues'), ('traffic_jam', 'rain',
'accident'))]

Inference – Asking Questions to Models

[76]

The to_junction_tree() method is available in
FactorGraph, MarkovModel classes as well.

Message passing
Let's go back to the previous example of the Bayesian network for the late- for
school- example:

Fig 3.6: Bayesian network for a student being late for school.

In the previous section, we saw how to construct a clique tree for this Bayesian
network. The following figure shows the clique tree for this network:

Fig 3.7: Clique tree constructed from the Bayesian network presented in Fig 3.3

Chapter 3

[77]

As we discussed earlier, in the belief propagation algorithm, we would be
considering factor /υ j to be a computational data structure that would take a
message τ j i→ generated from a factor /υ j , and produce τ i k→ , which can be further
passed on to another factor /υk , and so on.

Let's go into the details of what each message term (τ j and /υ) means. Let's begin
with a very simple example of finding the probability of being late for school (L). To
compute the probability of L, we need to eliminate all the random variables, such as
accident (A), rain (R), traffic jam (J), getting up late (G), and long queues (Q). We can
see that variables A and R are present only in cluster C1 and Q is present only in C3 ,
but J is present in all three clusters, namely C1 , C2 , and C3 . So, both A and R can be
eliminated from C1 by just marginalizing /υ1 with respect to A and R. Similarly, we
could eliminate Q from /υ3 . However, to eliminate J, we can't just eliminate it from
C1 , C2 , or /υ3 alone. Instead, we need contributions from all three.

Eliminating the random variables A and R by marginalizing the cluster potential /υ1
corresponding to C1 , we get the following:

() ()1 2 1 , ,
A R

J A R Jτ υ→ = /∑∑

Similarly, marginalizing the cluster potential /υ3 corresponding to C3 with respect to
Q, we get the following:

() ()3 2 3 ,
Q

J J Qτ υ→ = /∑

Now, to eliminate J and G, we must use τ1 2→ ()J , ()3 2 Jτ → , and / ()υ2 J L G, , .
Eliminating J and G, we get the following:

() () () ()1 2 3 2 2 , ,
G J

L J J J L Gφ τ τ υ→ →= /∑∑

From the perspective of message passing, we can see that /υ1 produces an output
message τ1 2→ . Similarly, /υ3 produces a message τ1 2→ . These messages are then
used as input messages for /υ2 to compute the belief for a cluster C2 . Belief for a
cluster iC is defined as the product of the cluster potential /υ j with all the incoming
messages to that cluster. Thus:

β τ τ υ2 1 2 3 2 2J L G J J J L G, , , ,() = () () / ()→ →

Inference – Asking Questions to Models

[78]

So, we can re-frame the following equation:

() () () ()1 2 3 2 2 , ,
G J

L J J J L Gφ τ τ υ→ →= /∑∑

It can be re-framed as follows:

() ()2 , ,
G J

L J L Gφ β=∑∑

Fig 3.8 shows message propagation from clusters C1 and C3 to cluster C2 :

Fig 3.8: Message propagation from clusters C1 and C3 to cluster C2 :

Now, let's consider another example, where we compute the probability of long
queues (Q). We have to eliminate all the other random variables, except Q. Using the
same approach as discussed earlier, first marginalize /υ1 with respect to A and R, and
compute τ1 as follows:

() ()1 2 1 , ,
A R

J A R Jτ υ→ = /∑∑

As discussed earlier, to eliminate the variable J, we need contributions from C1 , C2
, and C3 , so we can't simply eliminate J from /υ2 . The other two random variables L
and G are only present in C2 , so we can easily eliminate them from C2 . However,
to eliminate L and G from C2 , we can't simply marginalize /υ2 . We have to consider
the contribution of τ1 2→ (the outgoing message from C1) as well, because J was
present in both the clusters C1 and C2 . Thus, eliminating L and G would create τ 2
as follows:

() ()2 3 1 2 2 , ,
L G

J J L Gτ τ υ→ →= /∑∑

Chapter 3

[79]

Finally, we can eliminate J by marginalizing the following belief β3 of C3 :

β υ τ3 3 2 3J Q J Q J, ,() = / () ()→

We can eliminate it as follows:

() ()3 ,
J

Q J Qφ β=∑

Fig 3.9 shows a message passing from C1 to C2 and C2 to C3 :

Fig 3.9: Message passing from C1 to C2 and C2 to C3

In the previous examples, we saw how to perform variable elimination in a clique
tree. This algorithm can be stated in a more generalized form. We saw that variable
elimination in a clique tree induces a directed flow of messages between the clusters
present in it, with all the messages directed towards a single cluster, where the final
computation is to be done. This final cluster can be considered as the root. In our first
example, the root was C2 , while in the second example, it was C3 . The notions of
directionality and root also create the notions of upstream and downstream. If

iC is
on the path from jC to the root, then we can say that iC is upstream from jC , and
jC is downstream from

iC :

Fig 3.10:
iC is upstream from jC and jC is downstream from

iC

Inference – Asking Questions to Models

[80]

We also saw in the second example that C2 was not able to send messages to C3
until it received the message from C1 , as the generation of τ 2 3→ also depends on
τ1 2→ . This introduces the notion of a ready cluster. A cluster is said to be ready to
transmit messages to its upstream cliques if it has received all the incoming messages
from its downstream cliques.

The message C3 from the cluster j to the cluster i can be defined as the factor formed
by the following sum product message passing computation:

() { },j i j

j i j k j
C S k Neighbor j i

τ υ τ→ →
− −

= /∑ ∏
ε

We can now define the terms belief β1 of a cluster iC . It is defined as the product of
all the incoming messages τ k i→ from its neighbors with its own cluster potential:

()
i i k i

k Neighbor i
β υ τ →= / ∏

ε

Here, j is the upstream from i.

All these discussions for running the algorithm can be summarized in the
following steps:

1. Identify the root (this is the cluster where the final computation is to be made).
2. Start with the leaf nodes of the tree. The output message of these nodes can

be computed by marginalizing its belief. The belief for the leaf node would
be its cluster potential as there would be no incoming message.

3. As and when the other clusters of the clique tree become ready, compute the
outgoing message and propagate them upstream.

4. Repeat step 3 until the root node has received all the incoming messages.

Clique tree calibration
In the previous section, we discussed how to compute the probability of any variable
using belief propagation. Now, let's look at the broader picture. What if we wanted
to compute the probability of more than one random variable? For example, say
we want to know the probability of long queues as well as a traffic jam. One naive
solution would be to do a belief propagation in the clique tree by considering each
cluster as a root. However, can we do better?

Chapter 3

[81]

Consider the previous two examples we have discussed. The first one had C2 as the
root, while the other had C3 . We saw that in both cases, message computed from the
cluster C1 to the cluster C2 (that is τ1 2→) is the same, irrespective of the root node.
Generalizing this, we can conclude that the message τ j i→ from the cluster jC to the
cluster iC will be the same as long as the root is on the iC side and
vice versa. Thus, for a given edge in the clique tree between two clusters

iC and jC ,
we have only two messages to compute, depending on the directionality of the edges
(τ i j→ and τ j i→). For a given clique tree with c clusters, we have c −1edges between
these clusters. Thus, we only need to compute 2 1c −() messages.

As we have seen in the previous section, a cluster can propagate a message upstream
as soon as it is ready, that is, when it has received all the incoming messages from
downstream. So, we can compute both messages for each edge asynchronously.
This can be done in two phases, one being an upward pass and the other being a
downward pass. In the upward pass (Fig 3.11), we consider a cluster as a root and
send all the messages to the root. Once the root has all the messages, we can compute
its belief. For the downward pass (Fig 3.12), we can compute appropriate messages
from the root to its children using its belief. This phase will continue until there is
no message to be transmitted, that is, until we have reached the leaf nodes. This is
shown in Fig 3.11:

Fig 3.11: Upward pass

Fig 3.11 shows an upward pass where cluster {E, F, G} is considered as the root node.
All the messages from the other nodes are transmitted towards it.

Inference – Asking Questions to Models

[82]

The following figure shows a downward pass where the appropriate message
from the root is transmitted to all the children. This will continue until all the
leaves are reached:

Fig 3.12: Downward pass

When both, the upward pass and the downward pass are completed, all the adjacent
clusters in the clique tree are said to be calibrated. Two adjacent clusters i and j are
said to be calibrated when the following condition is satisfied:

, ,i i j j i j

i j
C S C S

β β
− −

=∑ ∑

In a broader sense, it can be said that the clique tree is calibrated. When a clique tree is
calibrated, we have two types of beliefs, the first being cluster beliefs and the second
being sepset beliefs. The sepset belief for a sepset ,i jS can be defined as follows:

()
, ,

, ,
i i j j i j

i j i j i j
C S C S

Sµ β β
− −

= =∑ ∑

Message passing with division
Until now, we have viewed message passing in the clique tree from the perspective
of variable elimination. In this section, we will see the implementation of message
passing from a different perspective, that is, from the perspective of clique beliefs
and sepset beliefs. Before we go into details of the algorithm, let's discuss another
important operation on the factor called factor division.

Chapter 3

[83]

Factor division
A factor division between two factors φ1 X Y,() and φ2 Y() , where both X and Y are
disjoint sets, is defined as follows:

/ () = ()
()

υ
φ
φ

X Y
X Y
Y

,
,1

2

Here, we define
0
0

0= . This operation is similar to the factor product, except that we
divide instead of multiplying. Further, unlike the factor product, we can't divide
factors not having any common variables in their scope. For example, consider the
following two factors:

a b Φ1 a,b()

a0 b0 0

a0 b1 1

a0 b2 2

a1 b0 3

a1 b1 4

a1 b2 5

b Φ2 b()

b0 0

b1 1

b2 2

Inference – Asking Questions to Models

[84]

Dividing Φ1 a,b() by Φ2 b() , we get the following:

a b Ψ a,b()

a0 b0
0

a0 b1
1

a0 b2
1

a1 b0
0

a1 b1
4

a1 b2
2.5

In pgmpy, factor division can implemented as follows:

In [1]: from pgmpy.factors import Factor
In [2]: phi1 = Factor(['a', 'b'], [2, 3], range(6))
In [3]: phi2 = Factor(['b'], [3], range(3))
In [4]: psi = phi1 / phi2
In [5]: print(psi)
╒═════╤═════╤════════════╕
│ a │ b │ phi(a,b) │
╞═════╪═════╪════════════╡
│ a_0 │ b_0 │ 0.0000 │
├─────┼─────┼────────────┤
│ a_0 │ b_1 │ 1.0000 │
├─────┼─────┼────────────┤
│ a_0 │ b_2 │ 1.0000 │
├─────┼─────┼────────────┤
│ a_1 │ b_0 │ 0.0000 │
├─────┼─────┼────────────┤
│ a_1 │ b_1 │ 4.0000 │
├─────┼─────┼────────────┤
│ a_1 │ b_2 │ 2.5000 │
╘═════╧═════╧════════════╛

Chapter 3

[85]

Let's go back to our original discussion regarding message passing using division. As
we saw earlier, for any edge between clusters iC and jC , we need to compute two
messages τ i j→ and τ j i→ . Let's assume that the first message was passed from

iC to

jC , that is, iC . So, a return message from jC to iC would only be passed when jC
has received all the messages from its neighbors.

Once jC has received all the messages from its neighbors, we can compute its belief
β j as follows:

()
j j k j

k Neighbor j
β υ τ →= / ∏

ε

In the previous section, we also saw that the message from jC to
iC can be

computed as follows:

() { },j i j

j i j k j
C S k Neighbor j i

τ υ τ→ →
− −

= /∑ ∏
ε

From the preceding mathematical formulation, we can deduce that the belief of jC ,
that is, β j , can't be used to compute the message from jC to iC as it would already
include the message from iC to jC in it:

() { }
j i j j k j

k Neighbor j i
β τ υ τ→ →

−

= / ∏
ε

That is:

j i j j iβ τ τ→ →=

Thus, from the preceding equation, we can conclude that the message from jC to
iC can be computed by simply dividing the final belief of jC , that is, β j , with the

message from iC to jC , that is, τ i j→ :

j
j i

i j

β
τ

τ→
→

=

Inference – Asking Questions to Models

[86]

Finally, the message passing algorithm using this process can be summarized
as follows:

1. For each cluster iC , initialize the initial cluster belief β1 as its cluster
potential /υ j and sepset potential between adjacent clusters iC and jC ,
that is, ,i jµ as 1.

2. In each iteration, the cluster belief β1 is updated by multiplying it with the
message from its neighbors, and the sepset potential i j− is used to store the
previous message passed along the edge (i j−), irrespective of the direction
of the message.

3. Whenever a new message is passed along an edge, it is divided by the
old message to ensure that we don't count this message twice (as we
discussed earlier).
Steps 2 and 3 can formally be stated in the following way for each iteration:

,i i j

i j i
C S

σ β→
−

= ∑

4. Here, we marginalize the belief to get the message passed. However, as we
discussed earlier, this message will include a message from jC to iC in it, so
divide it by the previous message stored in i j− :

,

i j
i j

i j

σ
τ

µ
→

→ =

5. Update the belief by multiplying it with the message from its neighbors:

.j j i jβ β τ →←

6. Update the sepset belief:

,i j i jµ σ →←

7. Repeat steps 2 and 3 until the tree is calibrated for each adjacent edge (i j−):

()
, ,

, ,
i i j j i j

i j i j i j
C S C S

Sµ β β
− −

= =∑ ∑

Chapter 3

[87]

As this algorithm updates the belief of a cluster using the beliefs of its neighbors,
we call it the belief update message passing algorithm. It is also known as the
Lauritzen-Spiegelhalter algorithm.

In pgmpy, this can be implemented as follows:

In [1]: from pgmpy.models import BayesianModel
In [2]: from pgmpy.factors import TabularCPD, Factor
In [3]: from pgmpy.inference import BeliefPropagation

Create a bayesian model as we did in the previous chapters
In [4]: model = BayesianModel(
 [('rain', 'traffic_jam'),
 ('accident', 'traffic_jam'),
 ('traffic_jam', 'long_queues'),
 ('traffic_jam', 'late_for_school'),
 ('getting_up_late', 'late_for_school')])

In [5]: cpd_rain = TabularCPD('rain', 2, [[0.4], [0.6]])
In [6]: cpd_accident = TabularCPD('accident', 2, [[0.2], [0.8]])
In [7]: cpd_traffic_jam = TabularCPD('traffic_jam', 2,
 [[0.9, 0.6, 0.7, 0.1],
 [0.1, 0.4, 0.3, 0.9]],
 evidence=['rain',
 'accident'],
 evidence_card=[2, 2])
In [8]: cpd_getting_up_late = TabularCPD('getting_up_late', 2,
 [[0.6], [0.4]])
In [9]: cpd_late_for_school = TabularCPD(
 'late_for_school', 2,
 [[0.9, 0.45, 0.8, 0.1],
 [0.1, 0.55, 0.2, 0.9]],
 evidence=['getting_up_late','traffic_jam'],
 evidence_card=[2, 2])
In [10]: cpd_long_queues = TabularCPD('long_queues', 2,
 [[0.9, 0.2],
 [0.1, 0.8]],
 evidence=['traffic_jam'],
 evidence_card=[2])

In [11]: model.add_cpds(cpd_rain, cpd_accident,
 cpd_traffic_jam, cpd_getting_up_late,
 cpd_late_for_school, cpd_long_queues)

Inference – Asking Questions to Models

[88]

In [12]: belief_propagation = BeliefPropagation(model)

To calibrate the clique tree, use calibrate() method
In [13]: belief_propagation.calibrate()

To get cluster (or clique) beliefs use the corresponding getters
In [14]: belief_propagation.get_clique_beliefs()
Out[14]:
{('traffic_jam', 'late_for_school', 'getting_up_late'): <Factor
representing phi(getting_up_late:2, late_for_school:2, traffic_jam:2)
at 0x7f565ee0db38>,
 ('traffic_jam', 'long_queues'): <Factor representing phi(long_
queues:2, traffic_jam:2) at 0x7f565ee0dc88>,
 ('traffic_jam', 'rain', 'accident'): <Factor representing phi(rain:2,
accident:2, traffic_jam:2) at 0x7f565ee0d4a8>}

To get the sepset beliefs use the corresponding getters
In [15]: belief_propagation.get_sepset_beliefs()
Out[15]: {frozenset({('traffic_jam', 'long_queues'),
 ('traffic_jam', 'rain', 'accident')}): <Factor
representing phi(traffic_jam:2) at 0x7f565ee0def0>,
 frozenset({('traffic_jam', 'late_for_school',
'getting_up_late'),
 ('traffic_jam', 'long_queues')}): <Factor
representing phi(traffic_jam:2) at 0x7f565ee0dc18>}

Querying variables that are not in the same cluster
In the previous section, we saw how to compute the probability of variables present
in the same cluster. Now, let's consider a situation where we want to compute the
probability of both being late for school (L) and long queues (Q). These two variables
are not present in the same cluster. So, to compute their probabilities, one naive
approach would be to force our clique tree to have these two variables in the same
cluster. However, this clique tree is not the optimal one, hence it would negate all
the advantages of the belief propagation algorithm. The other approach is to perform
variable elimination over the calibrated clique tree.

Chapter 3

[89]

The algorithm for performing queries of variables not present in same cluster can be
summarized as follows:

1. Select a subtree *τ of the calibrated clique tree τ , such that the query
variable []*Y scope τ⊆ . Let Φ be a set of factors on which variable
elimination is to be performed. Select a cluster of the clique tree *τ as the
root node and add its belief to Φ for each node in the clique tree Φ except
the root node.

()
i

iParent i
βφ

µ
=

2. Add it to Φ . Let Z be a random set of random variables present in Φ , except
for the query variables. Perform variable elimination on the set of factors Φ
with respect to the variables Z.

In pgmpy, this can be implemented as follows:

In [15]: belief_propagation.query(
 variables=['no_of_people'],
 evidence={'location': 1, 'quality': 1})
Out[15]: {'no_of_people': <Factor representing phi(no_of_people:2)
 at 0x7f565ee0def0>

MAP inference
Until now, we have been doing conditional probability queries only on the model.
However, sometimes, rather than knowing the probability of some given states of
variables, we might be interested in finding the states of the variables corresponding
to the maximum probability in the joint distribution. This type of problem often
arises when we want to predict the states of variables in our model, which is our
general machine learning problem. So, let's take the example of our restaurant
model. Let's assume that for some restaurant we know of, the quality is good, the
cost is low, and the location is good, and we want to predict the number of people
coming to the restaurant. In this case, rather than querying for the probabilities of
states of the number of people, we would like to query for the state that has the
highest probability, given that the quality is good, the cost is low, and the location is
good. Similarly, in the case of speech recognition, given a signal, we are interested in
finding the most likely utterance rather than the probability of individual phonemes.

Inference – Asking Questions to Models

[90]

Putting the MAP problem more formally, we are given a distribution ()Pφ χ
defined by a set Φ and an unnormalized ()Pφ χ% , and we want to find an assignment
ξ whose probability is at maximum:

()map argmax Pξξ χΦ=

mapξ
()1argmax P

Zξ χΦ= %

In the earlier equation, we used the unnormalized distribution to compute mapξ as
it helps us avoid computing the full distribution, because computing the partition
function Z requires all the values of the distribution. Overall, the MAP problem is to
find the assignment ξ for which ()Pφ χ% is at maximum.

A number of algorithms have been proposed to find the most likely assignment.
Most of these use local maximum assignments and graph structures to find the
global maximum likely assignment.

We define the max-marginal of a function f relative to a set of variables Y as follows:

()
()

()maxf Y y
MaxMarg y f

ξ
ξ

=
=

In simple words, ()PMaxMarg Y
Φ
%

 returns the unnormalized probability value of the
most likely assignment in ()P YΦ

% . Most of the algorithms work on first computing
this set of local max-marginals, that is (){ }f i iMaxMarg X x χε , and then use this to
compute the global maximum assignment, as we will see in the next sections.

MAP using variable elimination
Let's start with a very basic example of a network A -> B, as shown in the
following figure:

Fig 3.13: Basic Bayesian network with two variables

Chapter 3

[91]

For MAP, we want to compute the following:

()
,

max ,
a b
P a b = () ()

,
max |
a b
P a P b a () ()maxmax |

a b
P a P b a=

If we consider any particular assignment a for the variable A, we have the following:

() () ()
,

max , max |
a b b
P a b P a P b a=

So, for any given assignment of A, we have to select the assignment of B for which
P(b|a) is at maximum. We also have to select the maximum assignment of B as any
given assignment of A doesn't guarantee that it would be the global maximum.
Therefore, we need to check the values for each assignment of A.

Now, let's try to find the MAP assignment for the network in the Fig 3.13. Assuming
the assignment from A to a0 , let's define () ()0 0max |

b
a P b aφ = 0.8= and similarly,

() ()1 1max | 0.56
b

a P b aφ = = . Now, let's compute the max-marginal over A:

() ()max
a
P a aφ

[]max 0.1 0.8,0.9 0.44= ∗ ∗

0.396=

Factor maximization
For MAP queries in graphical models, we introduce another operation on factors
called maximization.

Let X be a set of variables, Y X/ε a variable, and (),X Yφ a factor. We define factor
maximization of Y in (),X Yφ to be a factor /υ over the variables X such that the
following occurs:

() ()max ,
Y

X X Yυ φ=/

Inference – Asking Questions to Models

[92]

Let's take an example of factor maximization to make this clearer:

Fig 3.14: Factor maximization of variable B from a factor (), ,A B Cφ

Therefore, in the preceding example of the A -> B network, we had () ()max |
B

A P B Aφ = .
Also, another important property of maximization is that it can be inserted in
equations if some of the factors don't involve the variable over which the maximization
is being performed. More formally, for a variable 1Y Scopeφ/ε :

()1 2 1 2max max
B B

φ φ φ φ∗ = ∗

This is a very important property of maximization as it allows us to push the
maximization operation inside equations, as we used to push summation in the
case of the variable elimination operation. This avoids the full joint distribution and
allows us to operate on much smaller factors.

Chapter 3

[93]

Let's now try a sample run of the algorithm on the late-for-school model:

Step Variable
eliminated

Factors used Intermediate
factor

New factor

1 A () (), , ,A JA J A Rφ φ ()1 , ,J A Rυ/ ()1 ,J Rτ

2 J () () ()1, , , , , ,Q LQ J L J G J Rφ φ τ ()2 , , , ,Q L R G Jυ/ ()2 , , ,Q L R Gτ

3 R () ()2, , , ,R R Q L R Gφ τ ()3 , , ,Q L R Gυ/ ()3 , ,Q L Gτ

4 Q ()3 , ,Q L Gτ ()4 , ,Q L Gυ/ ()4 ,L Gτ

5 G () ()4, ,G G L Gφ τ ()5 ,L Gυ/ ()5 Lτ

6 L ()5 Lτ ()6 Lυ/ τ θ6 ()

We can clearly see that the max-marginal operation is very similar to the variable
elimination we performed. The only difference is that rather than marginalizing the
intermediate factor over the variable to be eliminated, we maximize over the variable
to be eliminated.

We can compute the max-marginal over networks using pgmpy:

In [1]: from pgmpy.models import BayesianModel
In [2]: from pgmpy.factors import TabularCPD
In [3]: from pgmpy.inference import VariableElimination

Constructing the model
In [4]: model = BayesianModel(
 [('rain', 'traffic_jam'),
 ('accident', 'traffic_jam'),
 ('traffic_jam', 'long_queues'),
 ('traffic_jam', 'late_for_school'),
 ('getting_up_late', 'late_for_school')])
In [5]: cpd_rain = TabularCPD('rain', 2, [[0.4], [0.6]])
In [6]: cpd_accident = TabularCPD('accident', 2, [[0.2], [0.8]])
In [7]: cpd_traffic_jam = TabularCPD(
 'traffic_jam', 2,
 [[0.9, 0.6, 0.7, 0.1],
 [0.1, 0.4, 0.3, 0.9]],
 evidence=['rain',
 'accident'],

Inference – Asking Questions to Models

[94]

 evidence_card=[2, 2])
In [8]: cpd_getting_up_late = TabularCPD('getting_up_late', 2,
 [[0.6], [0.4]])
In [9]: cpd_late_for_school = TabularCPD(
 'late_for_school', 2,
 [[0.9, 0.45, 0.8, 0.1],
 [0.1, 0.55, 0.2, 0.9]],
 evidence=['getting_up_late', 'traffic_jam'],
 evidence_card=[2, 2])
In [10]: cpd_long_queues = TabularCPD('long_queues', 2,
 [[0.9, 0.2],
 [0.1, 0.8]],
 evidence=['traffic_jam'],
 evidence_card=[2])
In [11]: model.add_cpds(cpd_rain, cpd_accident,
 cpd_traffic_jam, cpd_getting_up_late,
 cpd_late_for_school, cpd_long_queues)

Calculating max marginals
In [12]: model_inference = VariableElimination(model)
In [13]: model_inference.max_marginal(
 variables=['late_for_school'])
Out[13]: 0.5714285714285714
In [14]: model_inference.max_marginal(
 variables=['late_for_school', 'traffic_jam'])
Out[14]: 0.40547815820543098

For any evidence in the network we can simply pass the evidence
argument which is a dict of the form of {variable: state}
In [15]: model_inference.max_marginal(
 variables=['late_for_school'],
 evidence={'traffic_jam': 1})
Out[15]: 0.5714285714285714
In [16]: model_inference.max_marginal(
 variables=['late_for_school'],
 evidence={'traffic_jam': 1,
 'getting_up_late': 0})
Out[16]: 0.80000000000000004
In [17]: model_inference.max_marginal(
 variables=['late_for_school','long_queues'],
 evidence={'traffic_jam': 1,
 'getting_up_late': 0}
Out[17]: 0.6399999999999999

Chapter 3

[95]

Again as in the case of VariableEliminaion we can also pass the
elimination order of variables for MAP queries. If not specified
pgmpy automatically computes the best elimination order for the
query.
In [18]: model_inference.m_marginal(
 variables=['late_for_school'],
 elimination_order=['traffic_jam',
 'getting_up_late', 'rain',
 'long_queues', 'accident'])
Out[18]: 0.5714285714285714
In [19]: model_inference.max_marginal(
 variables=['late_for_school'],
 evidence={'accident': 1},
 elimination_order=['traffic_jam',

 'getting_up_late',
 'rain', 'long_queues'])
Out[19]: 0.57142857142857129

MAP using belief propagation
In the previous section, we discussed the MAP variable elimination algorithm. In
the same way that we extended the sum-product variable elimination algorithm for
the clique tree and ended up on the belief propagation algorithm, we can perform
MAP using the belief propagation. In cases where variable elimination can be
computationally intractable, belief propagation has a clear advantage.

The procedure for belief propagation remains the same as discussed in the case of the
sum-product. The only thing that changes is the message that is passed between the
two clusters

iC and jC . Earlier, we used to compute messages from jC to
iC , that is

τ j i→
, as follows:

() { },j i j

j i j k j
C S k Neighbor j i

τ υ τ→ →
− −

= /∑ ∏
ε

However, now, instead of summing out the variables ,j i jC S− , we will maximize with
respect to them. Thus, the message in the case of MAP belief propagation can be
formulated as follows:

() { },

max
i j

j i j k jCj S k Neighbour j i
τ υ τ→ →− −

= / ∏
ε

Inference – Asking Questions to Models

[96]

When both, the upward pass and the downward pass of the messages are complete,
all the adjacent clusters of the tree are said to be max-calibrated. At max-calibration,
for any two adjacent clusters iC and jC , we have the following:

()
, ,

. , max max
i i j j i j

i j i j i jC S C S
Sµ β β

− −
= =

A clique tree is said to be max-calibrated when all the adjacent edges are
max-calibrated.

Finding the most probable assignment
In the previous section, we computed the maximum unnormalized probability value,
but for MAP, we need to compute the states of the variables corresponding to the
one in which this value occurs. Taking our earlier example of the network A → B, we
first computed ()max |

b
P b a , but the state of the variable B for which P(b|a) gives the

maximum value also depends on the state of the variable A. So, we will first need to
compute ()max |

b
P b a and then compute the state of B accordingly. So, from the CPDs

of the network, we can see that ()max
a
P a . Now we will look for () 1max

a
P a a= , which

gives us ()1max |
b
P b a . Hence, we get the maximum values corresponding to b0 and a0 .

Also, the computational cost of this operation is not high, as we are simply doing
another pass over the factors that have already been computed. Hence, the cost
would be linear in the number of variables in the network.

Now, let's continue the previous code example and do some map queries over the
networks using pgmpy:

In [20]: model_inference.map_query(variables=['late_for_school'])
Out[20]: {'late_for_school': 0}
In [21]: model_inference.map_query(variables=['late_for_school',
 'accident'])
Out[21]: {'accident': 1, 'late_for_school': 0}

Again we can pass the evidence to the query using the evidence
argument in the form of {variable: state}.
In [22]: model_inference.map_query(variables=['late_for_school'],
 evidence={'accident': 1})
Out[22]: {'late_for_school': 0}
In [23]: model_inference.map_query(variables=['late_for_school'],
 evidence={'accident': 1,
 'rain': 1})
Out[23]: {'late_for_school': 0}

Chapter 3

[97]

Also in the case of MAP queries we can specify the elimination
order of the variables. But if the elimination order is not
specified pgmpy automatically computes the best elimination
order for the query.
In [24]: model_inference.map_query(
 variables=['late_for_school'],
 elimination_order=['accident', 'rain',
 'traffic_jam',
 'getting_up_late',
 'long_queues'])
Out[24]: {'late_for_school': 0}
In [25]: model_inference.map_query(
 variables=['late_for_school'],
 evidence={'accident': 1},
 elimination_order=['rain',
 'traffic_jam',
 'getting_up_late',
 'long_queues'])
Out[25]: {'late_for_school': 0}

Similarly MAP queries can be done for belief propagation as well.
In [26]: belief_propagation.map_query(['late_for_school'],
 evidence={'accident': 1})
Out[26]: {'late_for_school': 0}

Predictions from the model using pgmpy
In the previous sections, we have seen various algorithms to computing conditional
distributions and learnt how to do MAP queries on the models. A MAP query is
essentially a way to predict the states of variables, given the states of other variables.
In a real-life problem, we are given some data with which we try to create a model
for our problem. Then, using this trained model, we try to predict the states of
variables for some new data point. This is the process with which we approach our
supervised learning problems in machine learning.

Now, to design the models, we need to create CPDs or factors, add them to the base
model, create an inference object, and then do MAP queries over it for new data
points to predict variable states. This whole process is done very often in machine
learning, so pgmpy provides the direct methods fit and predict to simplify the
whole process. Let's look at some code to understand how this works. To keep it
simple, we will once again be working with the restaurant model, with each variable
having two states.

First let's import modules that we will be needing
In [1]: import numpy as np
In [2]: from pgmpy.models import BayesianModel

Inference – Asking Questions to Models

[98]

Now let's create some random data over which we will train and
test the model. Here we are creating 1000 data points with each
value either 0 or 1.
In [3]: data = np.random.randint(low=0, high=2, size=(1000, 4))
In [4]: data
Out[4]:
array([[0, 1, 0, 0],
 [1, 1, 1, 0],
 [1, 1, 0, 0],
 ...,
 [1, 0, 0, 1],
 [1, 0, 1, 0],
 [1, 0, 0, 0]])

Now in general machine learning problems it doesn't matter which
column of the array represents which variable (until we use same
order for both training and prediction) because all the values
are on symmetrical axis but in graphical models each variable is
different (in the way it is connected to other variables etc) so
we will need to specify which columns of data are for which
variable. For that we will use pandas.

In [5]: import pandas as pd
In [6]: data = pd.DataFrame(data, columns=['cost', 'quality',
 'location',
 'no_of_people'])
In [7]: data
Out[7]:
 cost quality location no_of_people
0 0 1 0 0
1 1 1 1 0
2 1 1 0 0
3 0 1 1 1
4 1 1 1 0
5 1 0 1 0
6 0 0 0 0
7 0 0 1 0
..
993 0 0 1 1
994 0 0 0 0
995 0 0 0 0
996 1 0 0 0
997 1 0 0 1
998 1 0 1 0

Chapter 3

[99]

999 1 0 0 0

In [8]: train = data[:750]

We will try to predict the no_of_people from our model. So for
test data we will delete that column and then later on predict
those values.
In [9]: test = data[750:].drop('no_of_people', axis=1)
In [10]: test
Out[10]:
 cost quality location
750 0 0 1
751 0 1 1
752 0 1 1
753 1 0 0
754 1 0 1
755 1 0 1
756 0 1 0
757 1 0 0

992 0 0 0
993 0 0 1
994 0 0 0
995 0 0 0
996 1 0 0
997 1 0 0
998 1 0 1
999 1 0 0

Now we will need to create the base network structure for the
model.
In [11]: restaurant_model = BayesianModel(
 [('location', 'cost'),
 ('quality', 'cost'),
 ('location', 'no_of_people'),
 ('cost', 'no_of_people')])
In [12]: restaurant_model.fit(train)

Fit computes the cpd of all the variables from the training data
that we provided.
In [13]: restaurant_model.get_cpds()
Out[13]:
[<pgmpy.factors.CPD.TabularCPD at 0x7fc01c029be0>,
 <pgmpy.factors.CPD.TabularCPD at 0x7fc01c029eb8>,

Inference – Asking Questions to Models

[100]

 <pgmpy.factors.CPD.TabularCPD at 0x7fc01c029e48>,
 <pgmpy.factors.CPD.TabularCPD at 0x7fc01c029e80>]

Now for predicting the values of no_of_people using this model
we can simply call the predict method on our test data.
In [14]: restaurant_model.predict(test).values.ravel()
Out[14]:
array([1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0,
 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0,
 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0,
 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0,
 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0,
 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0,
 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0,
 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0,
 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1,
 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1,
 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1,
 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1,
 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1,
 0, 0, 0])

We can see here that using fit and predict has reduced a lot of work and
simplified things. Also, in some cases, the training data we have might not represent
the problem correctly. For example, let's say we know from prior knowledge that the
probability of having a restaurant in a good location or a bad location is 0.5, but it
is possible that the training set that we have has more data points for restaurants in
good locations, which could eventually lead to bias in our model. In such cases, we
could manually adjust the probability values in the CPDs so that they represent the
actual problem correctly.

A comparison of variable elimination and
belief propagation
In the previous sections, we saw that both belief propagation and variable
elimination are inter-related. Belief propagation is an extension of the variable
elimination algorithm on clique trees. So, one might think that they would have the
same computational complexity. However, in reality, belief propagation has some
advantages over variable elimination.

Chapter 3

[101]

The major advantage is the ability to query over multiple variables of a model
with a single computation (that is, calibration of the clique tree). Once the tree is
calibrated, we could query about multiple variables without performing any further
computation. However, in the case of variable elimination, we have to run the
algorithm more than once. Thus, if we have such a problem, in which we need to
query the model multiple times, we should definitely use belief propagation.

On the flipside, belief propagation also has a disadvantage over variable elimination.
Clique trees are a memory-expensive data structure. Moreover, in belief propagation,
we have to store the generated intermediate factors, whereas in the case of variable
elimination, we just discard them. Belief propagation is also less flexible as compared
to variable elimination, as the clique tree is fixed and predetermined. So, in the
case of very huge networks, memory might become a constraint when using
belief propagation.

In a nutshell, we can say that variable elimination is computationally expensive,
whereas belief propagation is memory expensive. We have to consider the trade-offs
to decide which algorithm to go for. If we have a very large network, then variable
elimination would be an attractive solution as it wouldn't be expensive in terms
of memory. However, in the case of smaller networks and multiple queries,
where computational time matters, it would be better to go with the belief
propagation approach.

Summary
In this chapter, we discussed two algorithms, namely variable elimination and belief
propagation, to find the conditional probability and do MAP queries on the models.
We also discussed how the elimination order of variables in variable elimination
affects the running complexity of the algorithm. To select efficient ordering, we
discussed a few algorithms. Then, we discussed MAP queries, using which we
can approach our machine learning problems through graphical models. We also
compared variable elimination and belief propagation and discussed the benefits of
each of these and when to use them.

In the next chapter, we will discuss various algorithms for approximate inference,
including sampling methods, using which we can do approximate inference over
models. Approximate methods help us save computation when we don't need the
computations to be exact.

[103]

Approximate Inference

In the previous chapter, we saw algorithms for exact inference on graphical models.
The computational complexity of calculating exact inference is exponential to the tree
width of the network. Hence, for much larger networks whose tree width is large,
exact inference becomes infeasible. Also, in many of our real-life problems, we are
not particularly concerned about the exact probabilities of random variables. Rather,
we are much more interested in the relative probabilities of the states of variables.
Therefore, in this chapter, we will discuss algorithms to perform approximate
inference over networks. There are many algorithms for approximate inference, but
the approach to find an approximate distribution remains the same in all of them. In
most of these, we usually define a target class Q of easy distributions, and then from
this class, we try to find the distribution that is closest to our actual distribution PΦ
and answer inference queries from this estimated distribution.

In this chapter, we will discuss:

• Approximate inference as an optimization problem
• Solving optimization problems using Lagrange multipliers
• Deriving a clique tree algorithm from an optimization problem
• The loopy belief propagation algorithm with code examples
• The expectation propagation algorithm with code examples
• The mean field algorithm with code examples
• The full particles and collapsed particles sampling methods
• The Markov chain Monte Carlo method

Approximate Inference

[104]

The optimization problem
Let's start with a little recap of exact inference. Assume that we have a factorized
distribution in the following form:

() ()1P x U
Z φ

φ
φΦ

Φ

= ∏
ε

Here, Z is the partition function, φ are the factors in the network, and Uφ is the
scope of the factor φ . In the case of exact inference, we computed ()P xΦ and then
answered queries over this distribution.

In the case of belief propagation, the end result of running the algorithm was a set
of beliefs on the clusters and sepsets. This set of beliefs was able to represent the
joint distribution ()P XΦ

. So, in the case of exact inference, we tried to find a set
of calibrated beliefs that was able to represent our joint distribution exactly. For
approximate algorithms, we will try to select the set of beliefs from all the sets of
beliefs that conform to the cluster tree and are best able to represent our original
distribution ()P XΦ

.

So now the question is, how do we compare the similarity between these two
distributions? There are many methods that we can use to compute the relative
similarity of the two distributions, for example, Euclidean distance,

1L distance, and
relative entropy. However, the problem with most of these methods is that we need
to answer hard queries on ()P xΦ

 to compute the distance, and the whole purpose of
approximate inference is to avoid computing the exact joint distribution. By using
relative entropy to measure the similarity between the distributions, we can avoid
answering hard queries on ()P XΦ . Now, let's see how relative entropy is defined
over distributions.

The relative entropy between two distributions 1P and 2P is defined as follows:

() ()
()1

1
1 2

2

|| P
P x

D P P E ln
P x

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

The relative entropy is always non-negative and is 0 only when 1 2P P= . Also, the
relative entropy is a nonsymmetrical quantity, so () ()1 2 2 1|| ||D P P D P P≠ .

Now, in our case of approximate inference, we will use ()()||D Q P xΦ (not
()()||D P x QΦ) because computing it also requires computing ()P xΦ). Then,

we can find the value of Q, which minimizes ()()||D Q P xΦ .

Chapter 4

[105]

Summarizing our complete optimization problem, let's assume that we have a cluster
tree T for a distribution PΦ and are given following the set of beliefs:

{ } () (){ },: : ,i T Ti ji V i j Eβ µ∪Q = ε ε

Here, iC denotes the clusters in T, iβ denotes beliefs over iC , and (),i jµ denotes
beliefs over (),Sep i j . This set of beliefs represents a distribution Q as follows:

() ,,

T

T

ii V

i ji j E

Q
β

µ
=
∏
∏

ε

ε

As the cluster tree is calibrated, it satisfies the marginal consistency constraints and
therefore (),i jµ for each (), Ti j Eε are the marginals of iβ and jβ . Therefore, the set
of calibrated beliefs Q satisfies the following equations:

() []i i iQ c cβ=

()() , ,, i j i ji jQ µ ⎡ ⎤= ⎣ ⎦s s

Now, we can define our optimization problem by selecting Q from the space of
calibrated sets Q:

{ } () (){ },: : ,i T Ti ji V i j Eβ µ∪ ∪Q = ε

This must be done such that it minimizes ()||D Q PΦ with the following constraints:

() () ()
()

,

, , , ,,

1
i i j

i

i j i j i i T i j i j
C S

i i T
c

s c i j E s Val S

c i V

µ β

β
−

⎡ ⎤ = ∀ ∀⎣ ⎦

= = ∀

∑

∑

ε ε

ε

To solve this optimization problem, we examine the different configurations of
beliefs that satisfy the marginal consistency constraints and select the one that
minimizes our objective entropy function ()||D Q PΦ .

Approximate Inference

[106]

The energy function
In the previous section, we saw that to find the approximate distribution, we need
to optimize the relative entropy ()||D Q PΦ , but computing the relative entropy
requires us to compute a summation over all possible instantiations of χ . To
avoid this, we will now try to transform our optimization function in the form of
an energy function.

We know the following:

() () ()|| Q QD Q P E lnQ E ln Pχ χΦ Φ= −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

Using the product form of ()P xΦ
, we have the following:

() ()ln ln lnP U Zφ
φ

χ φΦ
Φ

= −∑
ε

Also, we know that () ()Q QH E lnQχ χ= − ⎡ ⎤⎣ ⎦ . Using this in the preceding equation,
we get the following:

() () ()|| Q Q QD Q P H E ln U E ln Zφ
φ

χΦ
Φ

⎡ ⎤
= = − +⎢ ⎥

⎣ ⎦
∑
ε

,F P Q lnZΦ⎡ ⎤= − +⎣ ⎦
!

Here, ,F P QΦ⎡ ⎤⎣ ⎦
! is the energy functional where:

() ()
()

,

|
Q Q

Q Q

F P Q E ln P H

E ln H
φ

χ χ

φ χ
Φ

Φ

⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦
= +∑

! !

ε

The important thing to note here is that Z in the relative entropy term doesn't
depend on Q. Hence, minimizing the relative entropy ()||D Q PΦ is equivalent to
maximizing the energy function ,F P QΦ⎡ ⎤⎣ ⎦

! .

Chapter 4

[107]

Now, the energy function has two terms. The first one is known as the energy term.
The energy term is the summation of the expectations of the logarithm of the factors
in φ . Therefore, in this term, each factor of φ appears separately. Hence, if these
factors are small, then the expectations will be dealing with much fewer variables.
The second term in the energy function is called the entropy term and it represents the
entropy of Q. The complexity of computing this depends on our choice of Q.

Exact inference as an optimization
Before considering the approximate inference methods, let's solve the exact inference
problem using the concepts that we have so far developed in this chapter. In the
previous sections, we saw that maximizing the energy function is equivalent to
minimizing the relative entropy between Q and ()P xΦ

. So now, if we restrict
ourselves to calibrated cluster trees, we can further simplify the objective function.
Restricting ourselves to calibrated cluster trees allows us to rewrite the energy
function in a factored form as a sum of terms, each depending directly on only one of
the beliefs in Q. This form also reveals structure in the distribution, and is therefore a
much better starting point for further analysis.

Given a cluster tree T with a set of beliefs Q and an assignment α , which maps
factors in to clusters in T, we define the factored energy function as follows:

[] ()
()

,
,

,
i i i i j

T T T

C i i i j
i V i V i j

F P Q E ln H C H Sβ β µυΦ −⎡ ⎤ ⎡ ⎤= + −/ ⎣ ⎦⎣ ⎦ ∑ ∑ ∑! !
ε ε ε

Here,
iυ/ is the initial potential assigned to

iC :

(),
i

Iφ α φ
υ φ

=

=/ ∏

Here,
i iCE β represents the expectation on the value iC given the beliefs iβ .

The first term is a sum of terms of the form []
i iC iE lnβ υ/ . Here,

iυ/ is a factor over
the scope iC and therefore, it maps from ()iVal C to +! . Hence, its logarithm is a
function from ()iVal C to +! . The beliefs iβ are a distribution over ()iVal C . We can
therefore compute the expectation ()

i

i i i
c

c lnβ υ/∑ . The last two terms are the entropies
of the beliefs associated with the clusters and sepsets in the tree. The important
benefit of this reformulation is that all the terms are now local and hence represent a
specific belief factor. We will see later on that this makes our tasks much simpler.

Approximate Inference

[108]

Now, using this form of the energy function, we can define the optimization
problem. Now, as Q is factorized according to T, we can represent it with a set of
calibrated beliefs. Marginal consistency is a constraint on the beliefs that requires
neighboring beliefs to agree on the marginal distribution on their joint subset, which
is equivalent to requiring that the beliefs be calibrated. Thus, we have the following
constrained optimization problem:

{ } (){ },: :i T i j TQ i i jβ µ= − ε

We want to optimize ,F P QΦ⎡ ⎤⎣ ⎦
! , where:

() () ()
,

, , , ,
,

, ,
i i j

i j i j i i T i j i j
C S

s c i j E s Val Sµ β⎡ ⎤ = ∀ ∀⎣ ⎦ ∑ ε ε

()
1

1i i T
c

c i Vβ = ∀∑ ε

() ()1 0 ,i T i ic i c Val Cβ ≥ ∀ ε

The constraints here are to ensure that the beliefs in Q are calibrated and represent
legal distributions.

As we now have a constrained optimization problem, we can use the Lagrangian
multipliers to solve this. Applying the Lagrangian multipliers, we get the following
equation:

()

()
,

, , , ,

,

1
T i

i i i j

i i i
i V c

i j j i i j i i i j i j
i j Nb c s

J F P Q

c

s s c s

λ β

λ β µ

Φ

→

⎡ ⎤= ⎣ ⎦
⎛ ⎞

− −⎜ ⎟
⎝ ⎠

⎛ ⎞
⎡ ⎤ ⎡ ⎤− −⎜ ⎟⎣ ⎦ ⎣ ⎦⎜ ⎟⎝ ⎠

∑ ∑

∑ ∑ ∑ ∑

! !

ε

ε

Here, iNb is the neighbor of iC in the clique tree. We have introduced Lagrange
multipliers iλ for each belief factor iβ to ensure that it sums up to 1. Also, for each
pair of neighboring cliques i and j and their assignment to sepset ,i js , we introduced
a Lagrange multiplier

,j i i jsλ → ⎡ ⎤⎣ ⎦ to ensure that the marginal distribution of ,i js in
jβ is consistent with its values in the sepset beliefs (),i jµ .

Chapter 4

[109]

Now, we simply need to find the maximum value of the Lagrangian J and for that,
we take its partial derivatives with respect to ()i icβ , , ,i j i jsµ ⎡ ⎤⎣ ⎦ and the Lagrange
multipliers:

() [] () ,ln ln 1
i

i i i i i j i i j
j Nbi i

J c c s
c

υ β λ λ
β →
∂ ⎡ ⎤= − − −/ ⎣ ⎦∂ ∑

ε

,

, , , ,
,

ln 1
i j

i j i j i j i j j i i j
i j s

J s s sµ λ λ
µ → →
∂ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦∂

Now, equating these to 0 to find the maxima, we get the following equations:

() { } { },exp 1 | exp
i

i i i i i j i i j
j Nb

c c sβ λ υ λ → ⎡ ⎤= − − −/ ⎣ ⎦∏
ε

{ } { } { },, , ,exp 1 exp exp
i ji j i j i j i j j i ss sµ λ λ→ ⎡ ⎤→ ⎣ ⎦

⎡ ⎤ ⎡ ⎤= − − −⎣ ⎦ ⎣ ⎦

These equations describe beliefs as functions of terms of the form { },exp i j i jsλ→ ⎡ ⎤− ⎣ ⎦ .
These terms play the role of a message i jδ → . To make this more explicit:

, ,
1exp
2i j i j i j i js sδ λ→ →

⎧ ⎫⎡ ⎤ ⎡ ⎤= − −⎨ ⎬⎣ ⎦ ⎣ ⎦⎩ ⎭

Rewriting the equation, we get the following:

() () ,
1exp 1
2

i

i i i i i i j i i j
j Nb

c Nb c sβ λ υ δ →
⎧ ⎫ ⎡ ⎤= − − + /⎨ ⎬ ⎣ ⎦⎩ ⎭

∏
ε

, , , ,i j i j i j i j j i i js s sµ δ δ→ →⎡ ⎤ ⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Approximate Inference

[110]

We can now rewrite the message i jδ → as follows:

()

()
{ }

,

,

, ,
,

,

,

,

,

,

1exp 1
2

i i j

i i j i

i j i j
i j i j

j i i j

i i i jC S

j i i j

i i i i k i i k
C S k Nb j

s
s

s

C s

s

Nb c s

µ
δ

δ

β

δ

λ υ δ

→
→

→

→
− −

⎡ ⎤⎣ ⎦=
⎡ ⎤⎣ ⎦

=
⎡ ⎤⎣ ⎦

⎧ ⎫ ⎡ ⎤= − − + /⎨ ⎬ ⎣ ⎦⎩ ⎭

∑

∑ ∏
ε

Note that the term
1exp 1
2i iNbλ− + is a constant as it doesn't depend on ic . When we

combine these equations, we can solve for iλ to ensure that this constant normalizes
the clique beliefs iβ .

The propagation-based approximation
algorithm
The propagation-based approximation algorithm is a more generalized version
of the belief propagation algorithm and works on the same principle of passing
messages. In the case of exact inference, we used to construct a clique tree and then
passed messages between the clusters. However, in the case of the propagation-based
approximation algorithms, we will be performing message passing on cluster graphs.

Let's take the simple example of a network:

Fig 4.1: A simple Markov network

Chapter 4

[111]

It is possible to construct multiple cluster graphs for this network. Let's take the
example of the following two cluster graphs:

Fig 4.2: Cluster graphs for the network in Fig 4.1

Fig 4.2 shows two possible cluster graphs for the network in Fig 4.1. The cluster
graph in Fig 4.2(a) is a clique tree and the clusters are (A, B, C) and (B, C, D).
Whereas, the cluster graph in Fig 4.2(b) has four clusters (A, B), (B, C), (C, D),
and (A, D). It also has loops:

Fig 4.3: Change of estimated probability with a number of iterations

Approximate Inference

[112]

Let's assume that the factors for the network are such that it's more likely for the
variables to agree with the same state than different states, that is, ()0 0,a bβ and
()1 1,a bβ are much larger than ()0 1,a bβ and ()1 0,a bβ , and so on. Applying the

message passing algorithm, messages will be passed from (A, B) to (B, C) to (C, D)
to (A, D) and then again from (A, D) to (A, B). Also, let's consider that the strength
of the message () (), , ,A B B Cµ increases the belief that b = 0. So now, when the cluster
passes the message, it will increase the belief that c = 0 and so on. So finally, when
the message reaches (A, B), it will increase the belief of A being 0, which in turn
also increases the chances of B being 0. Hence, in each iteration, because of the loop
in the network, the probability of A being 0 keeps on increasing until it reaches a
convergence point, as shown in the graph in Fig 4.3.

Cluster graph belief propagation
In the case of exact inference, we had imposed two conditions on cluster graphs
that led us to the clique trees. The first one was that the cluster graph must be a
tree and should have no loops. The second condition was that it must satisfy
the running intersection property. Now, in the case of the cluster graph belief
propagation, we remove the first condition and redefine a more generalized
running intersection property.

We say that a cluster graph satisfies a running intersection property if, whenever
there is a variable X, and iX Cε and jX Cε , there is only one path from iC to jC
through which messages about X flow.

This new generalized running intersection property leaves us another question,
"how do we define sepsets now?". Let's take the example of the following two cluster
graphs in Fig 4.4:

Fig 4.4: Two different clusters for the same network

Chapter 4

[113]

In the case of exact inference, our sepsets used to be the common elements in the
clusters. However, as we can see in the examples in the Fig 4.4, the same variable is
common in multiple clusters. Therefore, to satisfy our running intersection property,
we can't have it in the sepset of all the clusters.

In the case of clique trees, we performed inference by calibrating beliefs. Similarly,
in the case of cluster graphs, we also say that the graph is calibrated if, for each edge
(i, j) between the clusters iC and jC , we have the following:

, ,i i j j i j

i i
C S C S

β β
− −

=∑ ∑

Looking at the preceding equation, we can also say that a cluster graph is calibrated
if the marginal of a variable X is same in all clusters containing X in their sepsets.

To analyze the computational benefits of this cluster graph algorithm, we can take
the example of a grid-structured Markov network, as shown in Fig 4.5:

Fig 4.5: A 3 x 3 two-dimensional grid network

Approximate Inference

[114]

In the case of grid graphs, we are usually given the pair-wise parameters so they can
be represented very compactly. If we want to do exact inference on this network,
we would need separating sets that are as large as cutsets in the grid. Hence, the
cost of doing exact inference would be exponential in n, where the size of the grid
is n x n. Whereas, if we are doing approximate inference, we can very easily create
a generalized cluster graph that directly corresponds to the factors given in the
network. We can see one such example in Fig 4.6:

Fig 4.6: A generalized cluster graph for a 3 x 3 grid network

Each iteration of propagation in a cluster graph is quadratic in n.

Chapter 4

[115]

Constructing cluster graphs
In our discussion so far, we have considered that we were already given the cluster
graph. In the case of clique trees, we saw that different tree structures give the same
result, but the computational cost varies in different structures. Also, in the case
of cluster graphs, different structures have different computational costs, but the
results also vary greatly. A cluster graph with a much lower computational cost
may give very poor results compared to other cluster graphs with higher costs.
Thus, while constructing cluster graphs, we need to consider the trade-off between
computational cost and the accuracy of inference.

There are various approaches to construct cluster graphs. Let's discuss a few of them.

Pairwise Markov networks
In this class of networks, we are given potentials on each of the variables []i iXφ
and also pairwise potentials over some of the variables (), ,i ji j X Xφ ⎡ ⎤⎣ ⎦ . These pairwise
potentials correspond to the edges in the Markov network, and this kind of network
occurs in many natural problems. For these kinds of networks, we add clusters
for each of these potentials and then add edges between clusters with common
variables. Taking the example of a 3 x 3 grid graph, we will have a cluster graph,
as shown in Fig 4.7:

Fig 4.7: The cluster graph for a 3 x 3 grid when viewed as a pairwise MRF

Approximate Inference

[116]

Also, one thing worth noticing is that we can always reduce any network to a
pairwise Markov structure and apply this transformation to construct cluster trees.

Bethe cluster graph
Pairwise Markov networks work well only for cases where we have factors with
small scopes. However, in cases where the factors are complex, we won't be able to
do the transformation of the pairwise Markov network. For these networks, we can
use the Bethe cluster graph construction. In this method, we create a bipartite graph
placing all the complex potentials on one side and the univariate potentials on the
other side. Then, we connect each univariate potential with the cluster that has that
variable in its scope, thus resulting in a bipartite graph, as shown in Fig 4.8:

Fig 4.8: Cluster graph for a network over potentials {A, B, C}, {B, C, D}, {B, D, F}, {B, E}, and {D, E}
viewed as a Bethe cluster graph

Its implementation with pgmpy is as follows:

In [1]: from pgmpy.models import BayesianModel
In [2]: from pgmpy.inference import ClusterBeliefPropagation as
 CBP
In [3]: from pgmpy.factors import TabularCPD
In [4]: restaurant_model = BayesianModel([
 ('location', 'cost'),
 ('quality', 'cost'),
 ('location', 'no_of_people'),
 ('cost', 'no_of_people')])
In [5]: cpd_location = TabularCPD('location', 2, [[0.6, 0.4]])
In [6]: cpd_quality = TabularCPD('quality', 3, [[0.3, 0.5, 0.2]])
In [7]: cpd_cost = TabularCPD('cost', 2,
 [[0.8, 0.6, 0.1, 0.6, 0.6, 0.05],
 [0.2, 0.1, 0.9, 0.4, 0.4, 0.95]],
 ['location', 'quality'], [2, 3])
In [8]: cpd_no_of_people = TabularCPD(
 'no_of_people', 2,

Chapter 4

[117]

 [[0.6, 0.8, 0.1, 0.6],
 [0.4, 0.2, 0.9, 0.4]],
 ['cost', 'location'], [2, 2])
In [9]: restaurant_model.add_cpds(cpd_location, cpd_quality,
 cpd_cost, cpd_no_of_people)
In [10]: cluster_inference = CBP(restaurant_model)
In [11]: cluster_inference.query(variables=['cost'])
In [12]: cluster_inference.query(variables=['cost'],
 evidence={'no_of_people': 1,
 'quality':0})

Propagation with approximate messages
In the earlier section, we discussed a variant of belief propagation where we relaxed
the constraint of having a clique tree, and did belief propagation on a cluster graph.
In this section, we will take a different approach. Instead of relaxing on the structure,
we will be approximating the messages passed between the clusters. Although this
approach can be extended to work with cluster graphs as well, the scope of this book
is only limited to clique trees.

Let's consider a simple pairwise Markov model, as shown in Fig 4.9. As discussed
in the previous section, a pairwise Markov model is simply a Markov model with
the factors ,i jφ associated with each edge i jX X− , along with the univariate factors
iφ corresponding to each random variable iX . Thus, the following model will have

factors such as
1,1, 1,2A Aφ ,

1,1, 2,1A Aφ , and
1,1, 2,2A Aφ along with

11A
φ ,

21A
φ ,

31A
φ , and so on. Let's

also assume that each random variable present in this network is binary.

Fig 4.9: Markov model represented by 3 x 3 grid network

Approximate Inference

[118]

A cluster tree for this network can be created, as shown in Fig 4.10. Although
this may not be an optimal cluster tree, it's a valid one as it satisfies the running
intersection property, and each node represents a cluster of random variables
present in the original network.

Fig 4.10: Cluster tree corresponding to the Markov model in Fig 4.9

In our previous discussion about the cluster tree (or clique tree), we never discussed
the internal structure of each cluster, but the internal structure of the cluster becomes
important in the context of this algorithm. For the calibration of the previously
mentioned clique tree, we need to transmit message across the clusters. Suppose
the message from 1C to 2C , that is

1 2 1,1 2,1 3,1, ,A A Aδ → ⎡ ⎤⎣ ⎦ , can be approximated by its
factored form as follows:

1 2 1,1 2,1 3,1 1 2 1,1 1 2 2,1 1 2 3,1, ,A A A A A Aδ δ δ δ→ → → →⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

We can see that the factored form is more compact as compared to the original
message. The original message will have 32 8= variables, whereas the factored
form can be represented only by using 2 * 3 = 6 parameters (two parameters for each
variable as they are assumed to be binary). However, this compact representation
helps us to save only two variables. So, the question that arises is whether the
approximation is worth the savings or not. How can we use these approximations
to compute the inference? We can get similar saving even if we just use some
approximation that is richer than the naive independence assumption we used earlier.
Even if we use approximations by exploiting the conditional independence among the
random variables represented by the chain structure 1,1 2,1 3,1A A A− − , the question still
remains the same: how can we use these approximations to compute the inference?

Chapter 4

[119]

Before answering these questions, let's discuss factor sets. A factor set { }1,..., nφ φ φ=
!

provides a compact representation of
1 2 nφ φ φ⋅ ⋅⋅⋅ . Thus, the product of two factor sets

is nothing but their union. For example, suppose { }1 11 1,..., nφ φ φ=
!

 and { }2 21 2,..., mφ φ φ=
!

.
Then, their product should be 11 12 1 21 22 2n mφ φ φ φ φ φ⋅ ⋅⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ , which can be written as a
factor set of { } { }11 1 21 2,..., ,...,n mφ φ φ φ∪ .

Coming back to our previous question, how can we use these approximations to
compute the inference? Let's assume that we somehow factorized the message from
cluster 1C to cluster 2C , that is 1 2δ → into a factor set 1 2δ →

!
 consisting of univariate

factors. Similarly, consider that we factorized the message from cluster 3C to cluster
2C , and 3 2δ → into a factor set 3 2δ → consisting only of univariate terms. To compute

the belief of cluster 3 2δ →

!
, we need to multiply the initial potential of 2C , that is

2C with messages 1 2δ → and 3 2δ → . As both the messages 1 2δ → and 3 2δ → have been
factored into factor sets consisting only of univariate factors, the network structure of
cluster

2C remains unchanged (as shown in Fig 4.11). That is, no extra edge between
any two variables is added as none of the factors from the message represent
interaction among the random variables:

Fig 4.11: Internal network structure of cluster
2C remains unchanged.

It is still a tree with tree width of two.

As the cluster 2C has a tree structure internally, we can apply any exact inference
algorithm to compute the marginals of the random variables present in this cluster.

Approximate Inference

[120]

If we use a richer approximation that exploits the chain structure of the cluster
1C to

compute the message 1 2δ → , it will contain factors representing interactions among
11A , 21A and 21A , 31A . When this message is multiplied with 2υ/ along with 3 2δ → , it

will modify the network structure of 2C ; it will introduce an edge between 11 21A A−
as well as an edge between 21 31A A− , as shown in Fig 4.12. Still, the network has a
tree width of two and we can still use exact inference to compute the marginals of the
random variables present in this cluster.

Fig 4.12: The internal network structure of 2C with a richer approximation of 1 2δ →

So we can see how these approximations can help us in computing the inference.

Message creation
Now, the question is, how do we compute these messages, or more precisely, how do
we factorize the message from cluster iC to jC , that is i jδ → , into factor sets?

To answer this question, let's go back to the first principle method of computing a
message from iC to jC . i jδ → is computed as follows:

() { },i i j

i j i k i
C S neighbor i j

δ υ δ→ →
− −

= /∑ ∏

Chapter 4

[121]

If all the messages from neighbors
k iδ →

 are already factorized into factor sets, then
their product is nothing but the union of their corresponding factor sets. The initial
potential

iυ/ can be factorized into a factor set of all the initial factors present in the
cluster. The final factor product can be computed by the union of all the factor sets.

To compute the message, we also need to marginalize the after-product. To
marginalize a factor set φ

!
 with respect to a variable X, we need to couple all

the factors containing X and marginalize them. So, like the product of a factor
set, marginalizing it doesn't present any problems. So, the major problem lies in
factorizing the marginal probabilities into a factor set. In a clique tree, the results
from marginalizing a clique would not satisfy any conditional independence, so it
can't be factorized into a factor set. However, for efficient inference, we want the
messages to be factorized into a factor set. This can be achieved by approximating
the message by a family of distributions that can be factorized. It turns out that there
is a family of distributions that can be approximated for these messages and that
the distribution is simply the product of the marginals of the individual variables
present in the messages. The message is often not normalized, so it is not treated as
a distribution. However, we can normalize the message and treat it as a distribution.
To compute the marginals, we can use any of the exact inference algorithms that we
discussed earlier, such as variable elimination or belief propagation.

Summarizing all these points, we can create an algorithm to compute the
approximate messages to be transmitted between clusters in the clique tree:

1. Create a factor set φ
!

 by the union of all the factor sets corresponding to the
initial cluster potential as well as the input messages received.

2. Initialize an inference data structure U with this factor set to perform exact
inference. It could be a clique tree in the case of belief propagation or a set of
factors in the case of variable elimination.

3. Perform inference on U to compute the marginals of variables to be present
in the final message.

4. The factor set of the marginals is the output message.

Approximate Inference

[122]

For example, let's try to work out how to create the messages 1 2δ → and 2 3δ → for
the cluster tree represented in Fig 4.11, starting with 1 2δ → . This can be computed by
creating a factor set φ

!
 as the union of 1υ

!
 (factor set corresponding to 1υ/)

and the input message. As there is no input message for this cluster, φ
!

 will be
{ }11, 21 21, 31 11 21 31, , , ,A A A A A A Aφ φ φ φ φ . To compute the marginals for 11A , 21A , and 31A
using the belief propagation method, we could use a clique tree, as shown in Fig 4.13:

Fig 4.13: A Clique tree to compute the marginals of 11A , 21A , and 31A

The factor set representing the message from 1C to 2C , that is
1 2δ →

!
, formed by the

marginals of 11A , 21A , and 31A will be { }11 21 31, ,A A Aφ φ φ
! ! !

.

Similarly, to compute 2 3δ →

!
, the first step is to create 1 2 2φ δ υ→= ∪

! ! ! , where 2υ
!

represents the factor set corresponding to 2υ/ . Then, we create an inference data
structure for exact inference to compute the marginals of 12A , 22A , and 32A and
initialize with φ

!
. As 1 2δ →

!
 contains only univariate factors, the structure of 2C

remains unchanged. Fig 4.14 represents the clique tree that can be used as an
inference data structure to compute the marginals of 12A , 22A , and 32A :

Fig 4.14: A clique tree to compute the marginals of 12A , 22A , and 32A

Chapter 4

[123]

Inference with approximate messages
In the previous section, we discussed the methods of creating messages to transmit
between clusters. Once we have these messages, the next task is to perform inference
on the clique tree. While discussing exact inference, we discussed two methods
of performing inference on a clique tree, one being the sum-product algorithm,
the other being the sum-product-divide or belief update algorithm. For the exact
inference, both of these algorithms will give the same result, but in the case of
approximate inference, they are not the same.

Before we discuss these steps in detail, let's look at the difference between the
exact and approximate inference algorithms. Once the tree is calibrated, the beliefs
so computed don't represent the joint probability distribution of all the variables
present in the cluster (as it was in the case of exact inference). So, to answer
queries about the variables present in the cluster, we can't just marginalize other
variables from the belief. Instead, after calibration, we have the factor sets of beliefs
parameterizing the network structure of the corresponding cluster. In the previous
example, after the clique tree is calibrated, the belief for the cluster 2C can be
factorized as follows:

2 2 1 2 3 2β υ δ δ→ →= ∪ ∪/
! ! !!

The factors present in the factor set
2β
! parameterize the network structure of cluster

2C . As the network structure allows tractable inference, we can answer queries
about these variables using inference methods such as variable elimination or
belief propagation.

Sum-product expectation propagation
The sum-product expectation propagation algorithm is similar to the sum-product
algorithm we discussed for exact inference, except that we modify the procedure
to compute the message. There, we computed the message by summing out
(or marginalizing) the variable from the product of factors. Here, we compute
the message as discussed in the previous section. Similar to the exact inference
equivalent, in the case of approximate inference for calibration of the clique tree,
we require two passes, one upward and one downward. So, unlike the previous
approximate inference, it converges in a fixed number of steps.

Approximate Inference

[124]

Let's start with a simple example, as shown in Fig 4.15:

Fig 4.15: Simple pairwise Markov network consisting of four random variables

Suppose the factors associated with the given Markov model are as follows:

A B ()1 ,A Bφ

0a 0b 10

0a 1b 0.1

1a 0b 0.1

1a 1b 10

A C ()2 ,A Cφ

0a 0c 5

0a 1c 0.2

1a 0c 0.2

1a 1c 5

Chapter 4

[125]

C D ()4 ,D Bφ

0c 0d 0.5

0c 1d 1

1c 0d 20

1c 1d 2.5

D B 0a

0d 0b 5

0d 1b 0.2

1d 0b 0.2

1d 1b 5

From the preceding factors, we can see that there is a strong coupling between the
variables A and B. It seems that A = B. The potentials ()1 ,A Cφ and ()4 ,D Bφ indicate
weaker coupling between A and C, and B and D.

If we perform the exact inference in this network, we find the following marginal
posteriors:

()0 0, 0.274P a b =

()0 0, 0.102P c d =

()0 1, 0.002P a b =

()0 1, 0.018P c d =

()1 0, 0.041P a b =

()1 0, 0.368P c d =

()1 1, 0.682P a b =

()1 1, 0.512P c d =

Approximate Inference

[126]

Let's try to compute the marginals using the approximate inference method that we
discussed now using pgmpy. The clique tree constructed is shown in Fig 4.16:

Fig 4.16: The clique tree constructed for the Markov model represented in Fig 4.18

In [1]: from pgmpy.factors import Factor
In [2]: from pgmpy.factors import FactorSet
In [3]: from pgmpy.models import MarkovModel
In [4]: from pgmpy.inference import VariableElimination
In [5]: from pgmpy.inference import BeliefPropagation
In [6]: import functools
In [7]: def compute_message(cluster_1, cluster_2,
 inference_data_structure=
 VariableElimination):
 """
 Computes the message from cluster_1 to cluster_2.
 The messages are computed by projecting a factor set to
 produce a set of marginals over a given set of scopes. The
 factor set is nothing but the factors present in the models.

 The algorithm for computing messages between any two clusters
 is:
 * Build an inference data structure with all the factors
 represented in the cluster.
 * Perform inference on the cluster using the inference data
 structure to compute the marginals of the variables present
 in the sepset between these two clusters.
 * The output message is the factor set of all the computed
 marginals.

 Parameters

Chapter 4

[127]

 cluster_1: MarkovModel, BayesianModel, or any pgmpy supported
 graphical model
 The cluster producing the message
 cluster_2: MarkovModel, BayesianModel, or any pgmpy supported
 graphical model
 The cluster receiving the message

 inference_data_structure: Inference class such as
 VariableElimination or BeliefPropagation
 The inference data structure used to produce factor
 set of marginals
 """
 # Sepset variables between the two clusters
 sepset_var = set(cluster_1.nodes()).intersection(
 cluster_2.nodes())

 # Initialize the inference data structure
 inference = inference_data_structure(cluster_1)

 # Perform inference
 query = inference.query(list(sepset_var))

 # The factor set of all the computed messages is the output
 # message query would be a dictionary with key as the variable
 # and value as the corresponding marginal thus the values
 # would represent the factor set
 return FactorSet(*query.values())

In [8]: def compute_belief(cluster, *input_factored_messages):
 """
 Computes the belief a particular cluster given the cluster
 and input messages

 \delta_{j \rightarrow i} where j are all the neighbors of
 cluster i. The cluster belief is computed as:
 .. math::
 \beta_i = \psi_i \prod_{j \in Nb_i} \delta_{j \rightarrow i}

 where \psi_i is the cluster potential. As the cluster belief
 represents the probability and it should be normalized to sum
 up to 1.

 Parameters

 cluster: MarkovModel, BayesianModel, or any pgmpy supported
 graphical model
 The cluster whose cluster potential is going to be

Approximate Inference

[128]

 computed.
 *input_factored_messages: FactorSet or a group of FactorSets
 All the input messages to the clusters. They should be
 factor sets

 Returns

 cluster_belief: Factor
 The cluster belief of the corresponding cluster
 """
 messages_prod = functools.reduce(lambda x, y: x * y,
 input_factored_messages)

 # As messages_prod would be a factor set, so its corresponding
 # factor would be product of all the factors present in the
 # factorset
 messages_prod_factor = functools.reduce(lambda x, y: x * y,
 messages_prod.factors)

 # Computing cluster potential psi
 psi = functools.reduce(lambda x, y: x * y,
 cluster.get_factors())

 # As psi represents the probability it should be normalized
 psi.normalize()

 # Computing the cluster belief according the formula stated
 # above
 cluster_belief = psi * messages_prod_factor

 # As cluster belief represents a probability distribution in
 # this case, thus it should be normalized
 cluster_belief.normalize()

 return cluster_belief

In [9]: phi_a_b = Factor(['a', 'b'], [2, 2], [10, 0.1, 0.1, 10])
In [10]: phi_a_c = Factor(['a', 'c'], [2, 2], [5, 0.2, 0.2, 5])
In [11]: phi_c_d = Factor(['c', 'd'], [2, 2], [0.5, 1, 20, 2.5])
In [12]: phi_d_b = Factor(['d', 'b'], [2, 2], [5, 0.2, 0.2, 5])

Cluster 1 is a MarkovModel A--B
In [13]: cluster_1 = MarkovModel([('a', 'b')])

Adding factors
In [14]: cluster_1.add_factors(phi_a_b)

Chapter 4

[129]

Cluster 2 is a MarkovModel A--C--D--B
In [15]: cluster_2 = MarkovModel([('a', 'c'), ('c', 'd'),
 ('d', 'b')])

Adding factors
In [16]: cluster_2.add_factors(phi_a_c, phi_c_d, phi_d_b)

Message passed from cluster 1 -> 2 should the M-Projection of psi1
as the sepset of cluster 1 and 2 is A, B thus there is no need to
marginalize psi1
In [17]: delta_1_2 = compute_message(cluster_1, cluster_2)

If we want to use any other inference data structure we can pass
them as an input argument such as: delta_1_2 =
compute_message(cluster_1, cluster_2, BeliefPropagation)
In [18]: beta_2 = compute_belief(cluster_2, delta_1_2)
In [19]: print(beta_2.marginalize(['a', 'b'], inplace=False))

 ╒═════╤═════╤════════════╕

 │ c │ d │ phi(c,d) │

 ╞═════╪═════╪════════════╡

 │ c_0 │ d_0 │ 0.0208 │

 ├─────┼─────┼────────────┤

 │ c_0 │ d_1 │ 0.0417 │

 ├─────┼─────┼────────────┤

 │ c_1 │ d_0 │ 0.8333 │

 ├─────┼─────┼────────────┤

 │ c_1 │ d_1 │ 0.1042 │

 ╘═════╧═════╧════════════╛

Lets compute the belief of cluster1, first we need to compute the
output message from cluster 2 to cluster 1
In [20]: delta_2_1 = compute_message(cluster_2, cluster_1)

Lets see the distribution of both of these variables in the
computed message

Approximate Inference

[130]

In [21]: for phi in delta_2_1.factors:
 print(phi)

 ╒═════╤══════════╕

 │ b │ phi(b) │

 ╞═════╪══════════╡

 │ b_0 │ 0.8269 │

 ├─────┼──────────┤

 │ b_1 │ 0.1731 │

 ╘═════╧══════════╛

 ╒═════╤══════════╕

 │ a │ phi(a) │

 ╞═════╪══════════╡

 │ a_0 │ 0.0962 │

 ├─────┼──────────┤

 │ a_1 │ 0.9038 │

 ╘═════╧══════════╛

The belief of cluster1 would be
In [22]: beta_1 = compute_belief(cluster_1, delta_2_1)
In [23]: print(beta_1)

 ╒═════╤═════╤════════════╕

 │ a │ b │ phi(a,b) │

 ╞═════╪═════╪════════════╡

 │ a_0 │ b_0 │ 0.3264 │

 ├─────┼─────┼────────────┤

 │ a_0 │ b_1 │ 0.0007 │

Chapter 4

[131]

 ├─────┼─────┼────────────┤

 │ a_1 │ b_0 │ 0.0307 │

 ├─────┼─────┼────────────┤

 │ a_1 │ b_1 │ 0.6422 │

 ╘═════╧═════╧════════════╛

Let's start with
1 2δ →

!
. It can be computed by marginalizing 1υ/ with respect to A and

B. Normalizing the messages to treat it as a distribution, we get ()0 0.5A aφ = and
()1 0.5A aφ = . Similarly, for B we get ()0 0.5B bφ = , ()1 0.5B bφ = . Thus, { }1 2 ,A Bδ φ φ→ =

!
 or

to put 1 2δ → would be as follows:

()1 2 0 0, 0.25a bδ → =

()1 2 0 1, 0.25a bδ → =

()1 2 1 0, 0.25a bδ → =

()1 2 1 1, 0.25a bδ → =

However, from exact inference we know the following:

()1 2 0 0, 0.495a bδ → =

()1 2 0 1, 0.005a bδ → =

()1 2 1 0, 0.005a bδ → =

()1 2 1 1, 0.495a bδ → =

We see that the approximate message loses the coupling between A and B. Thus, it is
a poor approximation of the exact message. The problem with this approach is that
the approximation of the message is done considering the impact of this message on
the downstream cluster.

Approximate Inference

[132]

Similarly, if we compute 2 1δ → , we get ()2 1 1 0.904aδ → = and ()2 1 1 0.173bδ → = . This is
again in contrast with the factor ()1 ,A Bφ , which strongly suggests that A= B. When
we combine the message with 1υ/ , we get the belief for the cluster ()1 0 1, 0.001a bβ =
as follows:

()1 0 0, 0.326a bβ =

()1 0 1, 0.001a bβ =

()1 1 0, 0.031a bβ =

()1 1 1, 0.642a bβ =

This is fairly close to what the exact marginal suggests.

Belief update propagation
As we have seen in the previous example, when we had the message 2 1δ → , we
computed the posterior probability of A and B fairly close to the exact value. This
raises the question, can we use the newly computed posterior probability to correctly
approximate the message 1 2δ → ? The answer is, no, we can't. The reason for this is
that, if we use the information that we got from jC and use it to correct 1 2δ → , we
will be double-counting evidence. So, is there a way to get away with this double-
counting yet still use the information?

If you recall, in the previous chapter, we discussed the belief update method that we
used to compute the message from the cluster iC to the cluster jC as follows:

,i i j
iC S

i j
j i

β
δ

δ
−

→
→

=
∑

So, using the belief update propagation, we can use the information 2 1δ → to modify
1 2δ →

. Let's see how to use it in the case of factor sets. The preceding equation can be
translated for the factor set as follows:

()i j i

i j
i j

j i

Approxσ β
σ

δ
δ

→

→
→

→

=

=

!
!!
!

Chapter 4

[133]

Here, ()iApprox β approximates the belief of the cluster iC by a family of
distributions that can be factorized. This is similar to what we did in the case of
approximating a message by a family of factorized distributions. Let's go back to
the example again to see how to implement it.

First, initialize all the messages to 1. In the first iteration, the value of
1 2δ →

!
 is the same

as what we computed earlier as
2 1δ →

r
 is 1 and so would be

2 1δ →

r
. In the second iteration

to compute 1 2δ →

!
, we will be using the value of 1β . Marginalizing 1β with respect to

B, we get ()0A aφ equals 0.326 + 0.001 = 0.327 and ()1A aφ equals 0.031+ 0.642 = 0.673.
Similarly, marginalizing 1β with respect to B, we get ()0 0.326 0.031 0.357B bφ = + =
and ()1 0.642 0.001 0.643B bφ = + = . So, 1 2σ → will be as follows:

()1 2 0 0, 0.327 0.357 0.116a bσ → = × =

()1 2 0 1, 0.327 0.643 0.210a bσ → = × =

()1 2 1 0, 0.673 0.357 0.240a bσ → = × =

()1 2 1 1, 0.673 0.643 0.432a bσ → = × =

1 2δ →
 can be computed by dividing

1 2σ →
 with

2 1δ →
. Finally, we have to

normalize
1 2δ →

 to treat it as a distribution.

The newly formed
1 2δ →

 can be viewed as a correction for
2β in the next iteration,

and so, it will be 2 1δ → for 1β . So, unlike the previous method, it doesn't converge in
two steps; rather it requires multiple iterations of message passing between the two
clusters, each correcting the other.

MAP inference
In the previous chapter, we studied MAP inference using variable elimination and
max-product message passing in clique trees. In a similar fashion, we can apply
max-product message passing on the cluster graph.

Recall that in the case of clique trees, the max-product message passing was analogous
to their sum-product message passing algorithm, differing only in the way the
message was computed. We used the maximization operation instead of summation.
Also, in the case of cluster trees, the max-product message passing is analogous to
their sum-product counterpart, maximizing the variable instead of summing it out.
Unlike their sum-product counterpart, there is no guarantee of the convergence of
this algorithm; it is more susceptible to nonconvergence. One reason for this is that
the summation averages the messages, whereas maximization doesn't. Thus, it can't
reduce oscillations.

Approximate Inference

[134]

Before going into further discussion about max-product message passing in cluster
trees, let's discuss local optimality and decoding. We say that an assignment *ξ has
the local optimality property, if for each clique iC in a max-calibrated clique tree, we
have the following:

() ()* argmax
i

i i ic
C Cξ βε

The assignment to iC in *ξ optimizes the belief of iC (that is iβ). The task of
finding a locally optimal assignment *ξ , given a max-calibrated set of beliefs is
known as decoding.

Just like the sum-product message passing on cluster trees, the max-product message
passing will not give the exact max-marginal even after max-calibration. The beliefs
so formed after max-calibration are called pseudo max-marginals.

Once we have the pseudo max-marginals by max-product message passing, we
are left with the task of decoding these marginals. As discussed earlier, the task of
decoding is nothing but finding a locally optimal assignment, and unlike clique trees,
such assignments do not necessarily exist in the case of cluster graphs. Let's look at a
simple example. Consider the cluster graph shown in Fig 4.17:

Fig 4.17: The cluster graph of three random variables A, B, and C

Chapter 4

[135]

The beliefs after max-calibration are as follows:

A B ()1 ,A Bβ

0a 0b 1

0a 1b 2

1a 0b 2

1a 1b 1

B C ()2 ,B Cβ

0b 0c 1

0b 1c 2

1b 0c 2

1b 1c 1

A C ()3 ,A Cβ

0a 0c 1

0a 1c 2

1a 0c 2

1a 1c 1

For example, to maximize ()1 ,A Bβ , we can select the value of 1a , 0b . Thus, to
maximize the belief ()2 ,B Cβ , we have to select 0c . Now, we can see that the
assignments 1a and 1c do not correspond to the maximum value of belief ()3 ,A Cβ
. No matter which assignment we choose, we can't obtain a single joint assignment
that maximizes all three beliefs. These kinds of loops are called frustrating loops.

Approximate Inference

[136]

From the preceding example, we can create a simple hypothesis that if all the node
beliefs are ambiguous, then there is no locally optimal joint assignment, but this is
not always true. Let's take the example of the following beliefs:

A B ()1 ,A Bβ

0a 0b 2

0a 1b 1

1a 0b 1

1a 1b 2

B C ()2 ,B Cβ

0b 0c 2

0b 1c 1

1b 0c 1

1b 1c 2

A C ()3 ,A Cβ

0a 0c 2

0a 1c 1

1a 0c 1

1a 1c 2

We can see that assignments 0a , 0b , and 0c , as well as 1a , 1b , and 1c are locally
optimal.

Chapter 4

[137]

We saw some cases where there are no locally optimal assignments and there are
cases where we can find locally optimal assignments. So, the basic question that
arises is, how do we find locally optimal assignments, if any exist?

From the definition of local optimality, we can say that an assignment is locally optimal
if and only if it selects optimal assignments from each cluster. Keeping this in mind,
we can now assign labels to each assignment in a cluster. The label of the assignment
can be "legal", if it optimizes the belief of that cluster, or "illegal" if it doesn't. So now,
the decoding task is converted into a task of finding an assignment such that it is the
legal value for all the clusters. This is nothing but a constraint satisfaction problem,
where the constraints are obtained from the local optimality. The detailed survey of
the constrained satisfaction problem is beyond the scope of this book. Thus, given a
max-product calibrated cluster graph, we can convert it into a constrained satisfaction

problem (CSP) simply by taking the belief of each cluster, and changing each
assignment that locally optimizes the belief to 1 and the rest to 0. We then run a CSP
solution method. If the outcome is an assignment that achieves 1 in every cluster belief,
then the assignment is guaranteed to be a locally optimal assignment. For example, one
of the CSP solution methods can be defined in terms of the Markov network, where all
the entries are either 1 for legal assignments or 0 for illegal ones. Thus, CSP is simply
finding the MAP assignment in a Markov model with {0, 1} valued beliefs. The CSP
problem is itself an NP-hard problem. Thus, we can't guarantee that we would be able
to find a locally optimal assignment efficiently, even if it existed.

The following is the implementation using pgmpy:

In [1]: from pgmpy.models import BayesianModel
In [2]: from pgmpy.factors import TabularCPD
In [3]: from pgmpy.inference import ClusterBeliefPropagation as
 CBP

Create a bayesian model as we did in the previous chapters
In [4]: model = BayesianModel([
 ('rain', 'traffic_jam'),
 ('accident', 'traffic_jam'),
 ('traffic_jam', 'long_queues'),
 ('traffic_jam', 'late_for_school'),
 ('getting_up_late', 'late_for_school')])
In [5]: cpd_rain = TabularCPD('rain', 2, [[0.4], [0.6]])
In [6]: cpd_accident = TabularCPD('accident', 2, [[0.2], [0.8]])
In [7]: cpd_traffic_jam = TabularCPD(
 'traffic_jam', 2,
 [[0.9, 0.6, 0.7, 0.1],
 [0.1, 0.4, 0.3, 0.9]],
 evidence=['rain', 'accident'],
 evidence_card=[2, 2])

Approximate Inference

[138]

In [8]: cpd_getting_up_late = TabularCPD('getting_up_late', 2,
 [[0.6], [0.4]])
In [9]: cpd_late_for_school = TabularCPD(
 'late_for_school', 2,
 [[0.9, 0.45, 0.8, 0.1],
 [0.1, 0.55, 0.2, 0.9]],
 evidence = ['getting_up_late',
 'traffic_jam'],
 evidence_card=[2, 2])
In [10]: cpd_long_queues = TabularCPD('long_queues', 2,
 [[0.9, 0.2],
 [0.1, 0.8]],
 evidence=['traffic_jam'],
 evidence_card=[2])
In [11]: model.add_cpds(cpd_rain, cpd_accident, cpd_traffic_jam,
 cpd_getting_up_late, cpd_late_for_school,
 cpd_long_queues)
In [12]: cbp_inference = CBP(model)
In [13]: cbp_inference.map_query(variables=['traffic_jam',
 'late_for_school'])
In [14]: cbp_inference.map_query(variables=['traffic_jam'],
 evidence={'accident': 1,
 'long_queues': 0})

Sampling-based approximate methods
In the previous sections, we discussed a class of approximate methods that used factor
manipulation methods to answer approximate queries on the models. Now, in this
section, we will be discussing a very different approach to approximate inference. In
this method, we will try to estimate the original distribution by instantiating all the
variables or a few variables of the network. Using these instantiations, we will try to
answer queries on the model. The methods using instantiations are generally known as
particle-based methods, and each instantiation is known as a particle.

There are many variations of the way we select particles or create instantiations of the
variables. For example, we can either create particles using a deterministic process, or
we can sample particles from some distribution. Also, we can have different notions
of a particle. For example, we can have a full assignment of all the variables in the
network, commonly known as full particles, or we can have assignments only to a
subset ()|P x w of variables of the network representing the conditional probability
()|P x w . These are commonly known as collapsed particles. The main problem with

full particles is that each particle is able to represent only a very small part of the
whole space, and therefore, for a reasonable representation of the distribution, we
need many more particles than are needed for collapsed particles.

Chapter 4

[139]

In general, in the case of sampling methods, to approximate the values of queries,
we generate some particles, and then, using these particles, we try to estimate the
value or the expectation of the query relative to each of the generated particles and
aggregate these to get the final result.

Also, concepts such as forward sampling and likelihood weighting, discussed in the
next sections, only apply to Bayesian networks and not to Markov networks.

Forward sampling
The simplest approach to the generation of particles is forward sampling. In the case
of forward sampling, we generate random samples []1ξ , []2ξ , …, []Mξ from the
distribution P(X).

Let's take the example of generating particles using our restaurant model:

Fig 4.18: Restaurant model

Approximate Inference

[140]

We start by simply selecting a state of the variable Location with the probabilities 0.6
and 0.4. Let's say we select the location of the restaurant to be good and select the
quality to be good as well. Now, knowing the observed states of Location and Quality,
we can now select the state of Cost to be high with the probability 0.8 and low with
the probability 0.2. Similarly, selecting a state for No. of People, we will get a single
full particle over our restaurant model. To generate M particles, we repeat the same
process M times to get M instantiations of the variables.

The main thing to notice is that we start with sampling variables that have no
parents, and do it in an order such that before we sample any variable, we already
have the values for all the parents of that variable.

After generating some particles, we can estimate the expectation of some function f
using these particles as follows:

() ()
1

1ˆ |
M

D
m

E f f m
M

ξ
=

= ∑

Now, for a case when we want to compute the probability of some event Y = y, using
these particles, we can simply calculate the fraction of particles satisfying the event.
So, we can compute the probability P(Y = y) as follows:

() []{ }
1

1ˆ 1
M

D
m

P y y m y
M =

= =∑

So, taking the example of our restaurant model and computing the probability
of Cost to be high, ()0P C of the restaurant is equivalent to getting the fraction of
particles satisfying these values:

() []{ }0

1

1 1 0
M

m
P C m C

M
ξ

=

= < >=∑

The key points to note in the case of particle methods are as follows:

• The result of the inference using sampling highly depends on the number of
particles that we used for inference. It is quite possible that generating a very
small number of samples will not represent our original distribution at all,
and will thus give very inaccurate results.

• We can use the same particles to answer multiple queries, and therefore,
sampling methods are very effective when we need to query the model
multiple times.

Chapter 4

[141]

Conditional probability distribution
Until now, we have only discussed computing the marginal probability of the
form P(Y= y) over variables, but in the real world, we are mostly working with
conditional probability distributions rather than marginal distributions. Now,
with sampling methods, we have multiple ways of approaching the problem of
conditional distributions, but all of them turn out to be significantly harder than
computing marginals.

Let's say we want to compute the probability of P(y|E = e). The first approach that
we can think of is to generate particles normally from the distribution and then
reject the samples that don't satisfy the condition E = e. This method is known as
rejection sampling. However, with this method, we will be wasting a lot of particles
and thus increasing the computational cost. The real problem arises when the
probability values of these events are very low. So, let's say P(E = e) = 0.005 and we
generate 10,000 samples. Then we will have only around 50 samples that will satisfy
our conditions. In general, to generate *M samples that satisfy our conditions, we
will have to generate ()* /M M P e= samples. So, this method turns out to be really
expensive when the probabilities of the variables are very small.

Another approach that we can take is to have separate estimators for P(e) and
P(y, e), and after computing these, we can easily compute P(y|e) using the chain rule.
Also, with proper bounds on P(e) and P(y, e), we can get a good approximation for
P(y|e). The problem, however, is that to get a low relative error on P(e), we will need
samples that again depend on the value of P(e). Also, a good bound on the relative
error of P(e) doesn't guarantee any bound on ()

()
,P y e

P e
. So, once again, we are stuck

with the same problem that we saw earlier.

Likelihood weighting and importance
sampling
In the previous section, we saw that the rejection method was very expensive
because we were generating particles that were not consistent with our evidence,
and then ultimately rejecting them. So, one possible solution to this problem is to
generate particles that are more relevant to our event. We will be exploring this
solution in this section.

Approximate Inference

[142]

To make the samples relevant to our evidence, we can force the sampling method to
only take those values that we have observed. Taking the example of our restaurant
model, let's say that we have observed that the location is good. Then, every time
when generating a sample, we will only select the Location variable to be good.
In this way, we can have observations that are consistent with our evidence, but
this method leads to another problem. Let's say that we have observed that Cost is
high, so when we generate samples forcing Cost to be high, we will still have the
probability of Location to be good as being 0.6, whereas as we have observed the cost
to be high, it should have increased. The reason why this is happening is that this
method fails to take into account the fact that the probability of the cost to be high
is greater when the location is good than when the location is bad. To account for
this error, we introduce weighting terms with each particle, which is equal to the
probability of getting the forced state, given the states of other variables. Therefore,
for the sample L = good, Q = good, C = high, and N = low, we will have the weighting
0.8 because = 0.8. Now, if multiple variables are forced, say C = good and N = high,
then for the sample, L = good, Q = good, C = good, and N = high, we will have the
weighting 0.6 X 0.8 = 0.48.

Generalizing this whole concept of assigning weighting to particles results
in an algorithm known as likelihood weighting. Using this algorithm, we
generate weighted particles. Using this likelihood weighting algorithm, we
compute a set of M samples and their weights ()| ,P C good L good Q good= = =
, and using these samples, we can now estimate the conditional distribution

[] [] [] [] [] []1 , 1 , 2 , 2 , ,D w w M w Mξ ξ ξ=< > < > < > as follows:

() [] []{ }
[]

1

1

1ˆ |
M

m
D M

m

w m y m y
P y e

w m
=

=

=
=∑

∑

Looking closely, we can see that this method is a generalization of forward sampling.
In the case of forward sampling, each of the particles had the weight as 1, therefore,
the numerator was simply the total number of particles satisfying the event and the
denominator was the total number of particles. Also, it's very important to note that
in the case of forward sampling, we can use these weighted particles to compute the
probability of any event.

Importance sampling
As it turns out, likelihood weighting is a special case of a more generic method
known as importance sampling. In this section, we will talk about importance
sampling and show how likelihood weighting is derived from it.

Chapter 4

[143]

Importance sampling is an approach used to estimate the expectation of a function
()f x relative to some distribution P(X), known as target distribution. As we saw in

the previous sections, we can easily do this by generating particles [] [] []1 , 2 , , Mξ ξ ξ
from P and then estimating the following:

[] []()
1

1 M

P
m

E f f x m
M =

≈ ∑

However, in some cases, we may want to generate samples from some other
distribution Q, known as proposal distribution or sampling distribution, for whatever
reason (for instance, it might be impossible or computationally very expensive to
generate samples from P). For example, P might be a posterior distribution of a
Bayesian network and hence, computing it may be very expensive. To deal with
such problems, in this section, we will discuss methods to get expectation estimates
relative to the distribution P, by generating samples from some other distribution Q.

So now, if we are generating our samples from the distribution Q, we can't simply
use it to compute our expectation value. We need to adjust our estimator to
compensate for this incorrect sampling. One obvious way to do this is as follows:

() () () () ()
()P X Q X

P X
E f X E f X

Q X
⎡ ⎤

=⎡ ⎤ ⎢ ⎥⎣ ⎦
⎣ ⎦

We can easily prove that this equality holds as the following:

() () ()
() () () ()

()
() ()

() ()

Q X
x

x

P

P X P X
E f X Q x f x

Q X Q X

f x P X

E X f X

⎡ ⎤
=⎢ ⎥

⎣ ⎦
=

= ⎡ ⎤⎣ ⎦

∑

∑

Now, as we have a relationship between the expectations relative to P(X) and Q(X),
we can generate samples [] [] []{ }1 , 2 , ,D Mξ ξ ξ= from the distribution Q and then
estimate the following:

() []() []()
[]()1

1ˆ
M

D
m

P x m
E f f x m

M Q x m=

= ∑

Approximate Inference

[144]

We call this the unnormalized importance sampling estimator. The main point to note for
this estimator is that it's unbiased and hence its mean for any dataset is precisely the
desired value. The second thing to note is that the variance of this type of estimator
decreases linearly with the number of samples. Hence, we can use this property to
estimate the number of samples we need for a good estimate.

One problem with unnormalized importance sampling is that we have considered
that we already know P. However, the most frequent reason for sampling from a
different distribution Q is that we only know the unnormalized distribution ()P X% ,
where () ()P X ZP X=% . So in this case, we can define the weightings as follows:

() ()
()
P X

w X
Q X

=
%

With this new weighting, however, our standard estimator for the expectation
fails, but we can define a similar estimator for this case as well. Before that, let's
see whether the expectation of the random variable ()w X is Z:

() () () ()
()

()

Q X
x

x

P X
E w X Q X

Q X

P X Z

=⎡ ⎤⎣ ⎦

= =

∑

∑

%

%

Now, we can define our previous estimator function as follows:

() () () ()

() () ()
()

() () ()
()

() () ()

() () ()
() ()

1

1

P X
x

x

x

Q X

Q X

Q X

E f X P x f x

P x
Q x f x

Q x

P x
Q x f x

Z Q x

E f X w X
Z
E f X w X
E w X

=⎡ ⎤⎣ ⎦

=

=

= ⎡ ⎤⎣ ⎦

⎡ ⎤⎣ ⎦=
⎡ ⎤⎣ ⎦

∑

∑

∑
!

Chapter 4

[145]

Given M samples [] [] []1 , 2 , ,D x x x M= , we can estimate ()DE f% as follows:

() []() []()
[]()

1

1

M

m
D M

m

f x m w x m
E f

w x m
=

=

=∑
∑

%

This estimator is known as normalized importance sampling estimator or weighted

importance sampling estimator. Unlike the unnormalized estimator, normalized
importance sampling estimators do have a bias.

Importance sampling in Bayesian
networks
In this section, we will apply the concept of importance sampling in Bayesian
networks. We will discuss the proposal distribution Q, which we usually use in the
case of Bayesian networks.

Assume that in a Bayesian network, we want to focus our samples to a particular set
of events Z = z, either because we want the probability of Z or we have observed Z.
Taking the example of our restaurant model, let's say we have observed that the cost
is high. It is easy for us to sample the descendant variables of Cost according to this
condition. However, it is not possible for us to sample the nondescendant variables
without performing inference over them.

So now, we define a distribution that simplifies the generation of particles. This new
distribution is known as mutilated network proposal distribution. Let's say, given
a network B and some conditions Z = z, we define the mutilated network ZB z=
as follows:

• Each node iZ Zε has no parents in , and the CPDs of all ZB z= give 1 to
i iZ z= and 0 to all other values ()'

i iZ Val Zε .
• The parents and CPDs of all other nodes X Z/ε are unchanged.

Approximate Inference

[146]

So, for the case where we observe Cost as high, we get the network as shown
in Fig 4.19:

Fig 4.19: The mutilated restaurant model when the cost is high

Importance sampling done with this method is exactly the same as the LW
algorithm.

Chapter 4

[147]

Computing marginal probabilities
If we want to compute the marginal probability of some event Z = z, we can simply
use forward sampling or do unnormalized sampling with the target distribution
as ()BP X and the proposal distribution Q generated from the mutilated network

ZB z= . With the indicator function for our query as () (){ }1f Z zξ ξ= = , our
unnormalized estimator is as follows:

() []{ } []()

[]
1

1

1ˆ 1

1

M

D
m
M

m

P z m Z z w m
M

w m
M

ξ ξ
=

=

= < >=

=

∑

∑

This equality holds in this case because the samples that have been generated already
satisfy Z = z.

Ratio likelihood weighting
Now, coming to the problem of computing the conditional probability P(y|e), we
can use ratio likelihood weighting. We compute P(y|e) using the chain rule as
() (), /P y e P e . To compute P(y, e) and P(e), we carry out unnormalized sampling

twice, once to generate M particles for P(y, e) and then to generate M ′ particles for
P(e). Then, we use the following equation:

() ()
()

[]

[]
1

1

ˆ ,ˆ | ˆ

1

1

D
D

D

M

m

M

m

P y e
P y e

P e

w m
M

w m
M

′

=

′

=

=

=

′

∑
∑

Normalized likelihood weighting
Ratio likelihood weighting allowed us to compute the probability of a single
query P(y|e), but in a case where we want to compute multiple queries or a joint
distribution P(Y|e), we could use ratio likelihood weighting for each y Yε . This
turns out to be computationally very expensive, so we generally use normalized
likelihood weighting to compute this.

Approximate Inference

[148]

Markov chain Monte Carlo methods
The LW sampling algorithm correctly samples the posterior of the descendant nodes,
but for the nondescendants, it samples the prior and tries to fix it with the weightings.
So, for the case where we have most of the observed nodes as leaves of the network,
we would be sampling the prior rather than the posterior. We will now discuss an
algorithm that generates a sequence of samples. The first samples generated may be
near to the prior, but as we keep on generating samples, it keeps getting closer to the
posterior. Also, this sampling algorithm works for both Bayesian and Markov networks.

Gibbs sampling
In the Gibbs sampling algorithm, we start by reducing all the factors with the observed
variables. After this, we generate a sample for each unobserved variable on the prior
using some sampling method, for example, by using a mutilated Bayesian network.
After generating the first sample, we iterate over each of the unobserved variables to
generate a new value for a variable, given our current sample for all the other variables.

Let's take the example of our restaurant model to make this clearer. Assume that we
have already observed that the cost of the restaurant is high. So, we will have the
CPDs: () () () ()0, , | , | ,oP L P Q P c L,Q P N L c . We start by generating our first sample with
forward sampling, and let's say our first samples are () ()0 01 1,l l q q= = and ()0 0n n=
. We will now iterate over all of our unobserved variables N, L, Q. Starting with N, we
will sample it from the distribution ()0 1| ,P N c l . As we are computing the distribution
over a single variable, we can compute it very easily as follows:

() () () () ()
() () () ()

()
()

1 1 0 1 1 1 0
0 1

1 1 0 1 1 1 0

1 0

1 0

| , | ,
| ,

| , | ,

| ,
| ,

n

n

P l P q P c l q P N l c
P N c l

P l P q P c l q P n l c

P N l c
n l c

Φ =

=

∑

∑

Now that we have sampled ()1n from the distribution ()0 1| ,P N c lΦ , we continue
with the iteration and sample L by conditioning the distribution with the new sample
value of N, ()1n . Similarly, we go on generating samples.

Chapter 4

[149]

The thing to notice here is that unlike forward sampling, when sampling here we
are taking into consideration the evidences, although this method will not give the
true posterior as we began sampling from the prior distribution. Yet, considering the
evidence, we are able to generate samples that are much closer to the posterior, and
the repetition of this method enables us to keep generating samples that get closer to
the posterior distribution.

In the later sections, we will formalize this concept using the Markov chain Monte
Carlo method. Using this method, we will be able to generate samples that will be
much closer to the posterior distribution.

Markov chains
In the case of graphical models, Markov chains are a graph of states of variables X,
and the edges represent the probability of transitioning from one state to another.
So, an edge x x′→ represents the probability of transitioning from the state x to x′ ,
represented by ()T x x′→ :

Fig 4.20: Markov chain for a drunk man

Let's take the example of a drunk man walking along a road. The position of the
person on the road can be represented by a random variable. Let's say the person
started at point 0 and can go ahead to +4 or go behind to -4, but there are walls beyond
this point, so even if he tries to go beyond these points he will stay at the same point.
Also, the probability of going either forward or backward is 0.4 and the probability of
staying in the same position is 0.2, that is, ()1 0.4T x x→ + = , ()1 0.4T x x+ → = and
() 0.2T x x→ = respectively. Also, () ()4 4 4 4 0.4 0.2 0.6T T+ → + = − → − = + = as the

road is blocked by the walls.

We can consider the position of the man at any given time t to be a random variable
represented by ()tX . This can be computed as follows:

() ()() ()

()

()() ()1 1t t t t

x Val X
P X x P X x T x x+ + ′ ′= = = →∑

ε

Approximate Inference

[150]

Putting the earlier equation in words, we can say that the probability of the
person being at point x′ at some time (t + 1) is equal to the sum over all the
states ()x Val Xε of the product of that person being in that state x and then
transitioning to state x′ from x.

Let's now try computing a few probability values for the man's position. We know
that the man started from the point 0, so at time t = 0, ()()0 0 1P X = = . Now, at time
t = 1, the probability of the man being at point 0 is ()()1 0 0.2P X = = , and the probability
of being at +1 or -1 is ()() ()()1 11 1 0.4P X P X= + = = − = . Moving on, at time t = 2, the
probability of the man being at point 0 is ()()2 0 0.2 0.2 0.4 0.4 0.4 0.4 0.36P X = = ∗ + ∗ + ∗ = ,
point +1 or -1 is ()() ()()2 21 1 0.4 0.2 0.2 0.4 0.16P X P X= + = = − = ∗ + ∗ = , and point +2 or -2 is

()() ()()2 22 2 0.4 0.4 0.16P X P X= + = = − = ∗ = . We can now see that the probability
of being at different states spreads with each time instance, and finally, we will
reach a uniform distribution.

To sample from the Markov chain, we can simply select states at each instant of time
using the distribution for that instance. However, Markov chains are not a very good
method if we want to sample from a uniform distribution, because for the range
[],K K− , it takes on average 2K steps to reach the uniform distribution. So now,
let's try to find out when a Markov chain converges and what the distribution on
convergence is.

To make the computation simpler, let's take an example of a similar, but much
smaller network, as shown in Fig 4.21:

Fig 4.21: An example of a Markov chain

Chapter 4

[151]

At equilibrium, we can say that for any state x′ , ()1tP + should almost be equal to ()tP :

()() ()() ()()
()

()1

Va

t

l

t

x X

tP X x P X x P X x T x x+′ ′ ′= = = ≈ = →∑
ε

At equilibrium, the distribution is known as stationary distribution and is
represented by ()Xπ . We can easily show this as follows:

() ()
()

()
x Val X

X x X x T x xπ π′ ′= = = →∑
ε

Now, let's try to compute the stationary distributions for the Markov chain in Fig
4.21. We can write the following equations:

() () ()1 2 30.6 0.5x x xπ π π= ∗ + ∗

() () ()2 1 20.7 0.4x x xπ π π= ∗ + ∗

() () ()3 1 30.3 0.5x x xπ π π= ∗ + ∗

For this to be a legal distribution, it should also satisfy:

() () ()1 2 3 1x x xπ π π+ + =

We can now easily solve this set of equations to get the following results:

()1 0.3615xπ =

()2 0.4217xπ =

()3 0.2168xπ =

Approximate Inference

[152]

In this case, we got a unique solution for the distributions, but in general, we cannot
guarantee that we will always get a converged distribution. For a finite state Markov
chain, we can verify the Markov chain for the following two conditions to check if
the distributions converge:

• It is possible to get from any state to another state using a positive
probability path

• For each node, there is a single-step positive probability path to get back to it,
that is, a self-loop with positive probability

These two conditions are usually sufficient but not necessary to guarantee
convergence in the distribution.

The multiple transitioning model
We saw how Markov chains work in cases where we have a single random variable.
However, in the case of graphical models, we have multiple variables, and each state of
the Markov chain is an assignment to multiple variables. So in this case, it is convenient
to decompose our transitioning model so that there is change only in a single variable
in each transition. We can extend our drunk man example to understand this better.
So now, consider that the man can now go ahead and back as well as left and right.
To represent this case with our transitioning model, a pair of random variables will
represent the X and Y positions for each state of the Markov chain.

In such cases, we define multiple transitioning models, and each such transitioning
model is known as a kernel. Now, to construct the Markov chain from these sets of

kernels, we can select a kernel
iT with a probability

1
k . We could also simply

cycle over each of the kernels. However, as we are using different kernels for
transitions, our Markov chain can't be homogeneous. To solve this problem, we
assume that each transition of the original Markov chain is a combination of k
transitions of these kernels.

Using a Markov chain
So far, we have been discussing constructing Markov chains. In this section, we will
see how to apply these concepts in the case of our graphical models. In the case of
probabilistic models, we usually want to compute the posterior probability P(Y|E
= e) , and to sample this posterior distribution, we will have to construct a Markov
chain whose stationary distribution is P(Y|E = e). So, the states of this Markov chain
should be instantiations x of variables Yχ − and should converge to ()Yπ χ − .

Chapter 4

[153]

So, for a state (),i ix x− in the Markov chain, we define the kernel iT as follows:

()()() (), , |i i i i i i iT x x x x P x x− − −′ =

We can see that this transition probability doesn't depend on the current value of

ix of
iX but only on the remaining state ix− . Now, it's really easy to show that the

posterior distribution () ()|P X P eχΦ = is a stationary distribution of this process.

In graphical models, Gibbs sampling can be very easily implemented in cases where
we can compute the transition probability ()|i iP X x− efficiently. We already know
the following:

()

() ()
: :

1

1

i j i j

j j
j

j j j j
j X D j X D

P D
Z

D D
Z

φ

φ φ

Φ =

=

∏

∏ ∏
ε ε

Let ,j ix − denote the assignment in ix− to { }j iD X− , noting that when ,,i j j iX D x −/ε is
a full assignment to jD . We can now derive the following:

() ()
()

() ()
() ()

() ()
() ()

()

, ,

, ,

, ,

, ,

,

|
|

|

1 , ,

1 , ,

, ,

, ,

,

i

j i j i

i j i j i

j i j i

i j i j i

i i
i i

i ix

j i j i j i j iC X C X

j i j i j i j ix C X C X

j i j i j i j iC X C X

j i j i j i j ix C X C X

j i j iC

P x x
P x x

P x x

x x x x
Z

x x x x
Z

x x x x

x x x x

x x

φ φ

φ φ

φ φ

φ φ

φ

−
−

−′′

− −∋ ∋

− −′′ ∋ ∋

− −∋ ∋

− −′′ ∋ ∋

−

′
′ =

′′

′ ′
=

′′ ′′

′ ′
=

′′ ′′

′
=

∑

∏ ∏
∑ ∏ ∏
∏ ∏
∑ ∏ ∏

(),,
j i

i j i

X

j i j ix C X
x xφ

∋

−′′ ∋
′′

∏
∑ ∏

Approximate Inference

[154]

Here, we can see that (),,i j iP x x −′ only requires the factors involving iX and also
vdepends only on the instantiations of the variable ix− of the Markov blanket of iX .
Similarly, in the case of Bayesian networks, this value depends only on the CPDs of iX
and its children.

Collapsed particles
So far, we have discussed various techniques to sample using full instantiations over
the variables. However, the problem with full instantiations is that they can only
cover a very small region of the space, as the space is exponential to the number of
variables. The solution to this is to have partial instantiations of the variables and use
a closed-form representation of a distribution over the rest. Collapsed particles are
also known as Rao-Blackwellized particles.

So, considering pX χ⊂ as the set of variables over which we will do the
assignments and which the particle will depend on, and

dX χ⊂ as the set of
variables over which we define a closed-form distribution, if we want to estimate
the expectation of some function ()f ξ relative to our posterior distribution
(), |p dP X X e we have the following:

() () () ()

() () ()

() ()() ()

|
,

| ,

, | , |

| | , , |

| | , |

p d

p d

d p
p

p d p dP e f
x x

p d p p d
x x

p p dP X x e
x

E P x x e f x x e

P x e P x x e f x x e

P x e E f x X e

ξ ξ⎡ ⎤⎣ ⎦
=

=

=

∑

∑ ∑

∑

Also, we are assuming that the internal expectation can be computed easily. So
essentially, we are using a hybrid approach in the case of collapsed particles.
We generate particles px for the variables pX and do the exact inference for the
variables in dX . In the case when we have pX χ= , then we get to the case of full
particles. Similarly, when 0pX = , we get to the case of exact inference. Also, as we
are doing exact inference on dX , we are eliminating any bias or variance introduced
because of the variables. Therefore, when pX is small enough, we are able to get
much better results using a smaller number of particles.

Chapter 4

[155]

Collapsed importance sampling
In the case of full particles for importance sampling, we used to generate particles
from another distribution, and then, to compensate for the difference, we used to
associate a weighting to each particle. Similarly, in the case of collapsed particles, we
will be generating particles for the variables pX and getting the following dataset:

[] [] []()()
1

, , | ,
M

p d p m
D x m w m P X x m e

=
=

Here, the sample []px m is generated from the distribution Q. Now, using
this set of particles, we want to find the expectation of ()f ξ relative to the
distribution ()|P eξ :

()
[] []() []()()

[]
| ,1

1

, ,
ˆ d p

M
p dP X x m em

D M

m

w m E f x m X e
E f

w m
=

=

⎡ ⎤⎣ ⎦
=
∑

∑

Fig 4.22: The late-for-school model

Approximate Inference

[156]

Let's take an example using the late-for-school model, as shown in Fig 4.22. Let's
consider that we have the evidence that 0j , 1q , and partition the variables as

{ },PX A R= and { }, , ,DX G L J Q= . So, we will generate particles over the variable

PX . Also, each such particle is associated with the distribution ()0 1, | , , ,P G L a r j q
. Now, assuming some query (say ()0 0 1| ,P l j q), our indicator function will be
()0 0 1| ,P l j q . We will now evaluate for each particle:

() { } ()0 1
0 0 0 1

, | , , ,
1 | , , ,

P G L a r j q
E L l P l a r j qξ⎡ ⎤< >= =⎣ ⎦

After this, we will compute the average of these probabilities using the weightings of
the samples.

Now, the question is, how do we define the distribution Q and find the weightings
for the particles?. We begin by partitioning the evidence variables into two parts,
namely pE and dE , where p pE E X= ∩ and

d dE E X= ∩ . As the collapsed
importance sampling was a hybrid process, we deal with the evidence accordingly,
using

pE as evidence in importance sampling and
dE

 as evidence in exact inference.

Let's consider an arbitrary distribution Q:

() () () ()

() ()
() () ()

|
,

, | , ,

|
| , , ,

p d

p d

p d p dP e
x x

p
p d p p d

x xp

E f P x x e f x x e

P x e
Q x P x x e f x x e

Q x

ξ ξ =

=

∑

∑ ∑

Using this, we can reformulate ()|pP x e as follows:

() ()
()
()

()

() () ()

,
|

, ,

1 , | ,

p
p

p p d

p p d p p

P x e
P x e

P e

P x e e
P e

P x e P e x e
P e

=

=

=

Chapter 4

[157]

Let's put this result back into the previous equation:

() () () () ()
() () () ()

() ()
()
() () () ()

|

| ,

,1 | , | , , ,

,1 | , , ,

p d

p d p

p p
p d p p d p p dP e

x xp

p p
d p p p dQ X P x x e

p

P x e
E f Q x P e x e P x x e f x x e

P e Q x

P x e
E P e x e E f x x e

P e Q x

ξ ξ =⎡ ⎤⎣ ⎦

⎡ ⎤
⎡ ⎤= ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

∑ ∑

From the preceding equation we get the following:

() ()
() (),

| ,p e
p d p p

p

P x x
w x P e x e

Q x
=

Now, computing the mean of importance weights, we get the following estimator:

() () () ()
() ()

() ()

() ()

|
| ,

| | ,

, , ,

P
p

p

p

p p
P p d p pQ X

x p

p p d p p
x

d p p d p
x

P x e
E w X Q x P e x e

Q x

P x e P e x e

P e x e P e e

=⎡ ⎤⎣ ⎦

=

= =

∑

∑

∑
So, we get the final equation as follows:

() ()
() () () ()

() ()
| ,

|

, ,
P d p

P

P p dQ X P x x e

P e
PQ X

E w X E f x x e
E f

E w Xξ ξ
⎡ ⎤⎡ ⎤⎣ ⎦⎢ ⎥⎣ ⎦=

⎡ ⎤⎣ ⎦

In the preceding discussion, we didn't place any restriction on the selection of the
distribution Q. The two main points to consider for the selection of the distribution Q
are as follows:

• It should be easy to generate samples from this distribution.
• It should be similar to our target distribution ()|pP X e .

Approximate Inference

[158]

In the case of collapsed particles, we will generate particles from the distribution
()pQ X . However, as we saw in the case of full particles, we had to sample over the

variable's parents before sampling the variable. In the case of collapsed particles, it
is quite possible that the parents of a variable are not in pX . The simplest solution
to this problem is to construct the set

PX in such a way that for every PX Xε ,
X PPar Xε holds as well. To do this, we must use a simple approach to start with the

nodes having no parents, include them in , and then work downwards from there.

Summary
In this chapter, we discussed different ways of performing approximate inference
in graphical models, such as cluster graph belief propagation, propagation using
approximate messages, and inference based on the concepts of sampling from the
model. In cluster graph belief propagation, we relaxed the constraint of having a
clique tree, and instead, performed belief propagation on the cluster graph. In the
propagation using approximate messages, instead of relaxing the constraints on the
structure of the graph, we tried to approximate the messages passed between the
clusters. Next, we discussed sampling methods in detail. There are two different ways
of sampling. The first includes full particles, where each sample has instantiations
of all the variables of the network. The other method consists of collapsed particles,
where each sample is an instantiation of a subset of the network's variables. We also
discussed the problems we face in the case of full particles. In full particles, a very
small part of the complete space is covered using each sample, due to which we need
many more samples than in the case of collapsed particles. We also discussed the
Markov chain Monte Carlo methods that are extensively used in practical problems.

In the next chapter, we will discuss parameter estimation in the case of Bayesian
networks. This will help us create graphical models using the data we have.

[159]

Model Learning – Parameter

Estimation in Bayesian
Networks

So far in our discussion, we have always considered that we already know the
network model as well as the parameters associated with the network. However,
constructing these models requires a lot of domain knowledge. In most real-life
problems, we usually have some recorded observations of the variables. So, in this
chapter, we will learn to create models using the data we have.

To understand this problem, let's say that the domain is governed by some underlying
distribution, *P . This distribution is induced by the network model, ()* *, *M K θ=
. Also, we are provided with a dataset, [] [] []{ }1 , 2 ,...,D d d d M= of M samples. As these
data points are obtained from our observations of the actual model, we can say that
these data points have been sampled from the distribution, *P . Also, we can assume
that all the data samples have been independently sampled from the distribution,
*P . Such data samples are known as independently and identically distributed

(IID) samples.

Now, we want to select a model from the family of models over the given variables,
such that this model, M% , induces the probability distribution, MP % , and this
distribution is close to the underlying distribution of our domain.

Model Learning – Parameter Estimation in Bayesian Networks

[160]

In this chapter, we will discuss the following topics:

• General ideas in learning
• Maximum likelihood parameter estimation
• Bayesian parameter estimation
• Maximum likelihood structure learning
• Bayesian structure learning

General ideas in learning
Before we discuss the specific methods to learn in the graphical models, in this
section, we will briefly discuss some general ideas related to learning.

The goals of learning
The perfect solution to our learning task would be to find a model, M% , so that the
probability distribution induced by it is the same as the underlying distribution of
our data. However, this is never possible in real life because of computational costs
and lack of data. So, as we can't find the exact underlying distribution, we try to
optimize our learning task, depending on the goal of learning. To make it clearer,
we can think of two different situations. Let's say in the first case, we want to learn
the model to answer conditional queries over some specific variables, whereas in
the second case, we want to answer multiple queries involving all the variables of
the network. Therefore, in the first case, we would like to optimize our learning over
variables, over which we want to answer queries at the cost of getting a less-accurate
distribution over the other variables. However, in the second case, we want our
learned model to be as close to the underlying model as possible, because we have to
answer queries over all the variables. Hence, we see that our goal of learning has a
huge effect on our learning task.

Density estimation
One of the most common reasons to learn a graphical model is the inference tasks. In
this case, we would like our learned model, M% , to induce a distribution,

MP % , which
is as close to the underlying distribution as possible. To measure the distance between
these two distributions, we can use the following relative entropy distance measure:

! " ! "
! "*

*
*||

P

P
D P P E log

P
#

#

#

$ %& '
() *+ ,+ ,

) *- ./ 0
!

"

"

Chapter 5

[161]

However, the problem with this measure is that we also need to know *P to compute
the relative entropy. To solve this problem, we simplify the equation as follows:

() ()
()

() ()
() ()

() ()

| | log

log log

log log

log

P

P

P P

P P

P
D P P E

P

E P P

E P E P

H X E P

ξ

ξ

ξ ξ

ξ

ξ
ξ

ξ ξ

ξ ξ

ξ

⎡ ⎤⎛ ⎞
′ = ⎢ ⎥⎜ ⎟⎜ ⎟′⎢ ⎥⎝ ⎠⎣ ⎦

′= −⎡ ⎤⎣ ⎦
′= −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

′= − − ⎡ ⎤⎣ ⎦

∼

∼

∼ ∼

∼

Here, we see that the first term depends only on *P , and hence, it is unchanged for
any choice of model. Therefore, we ignore this term and compare our models only
on the basis of the second term, ()* logPE Pξ ξ⎡ ⎤⎣ ⎦

% , and prefer the models that make this
term as large as possible. This term is commonly known as expected log-likelihood.
This term encodes the probability of our model to generate the given data points.
Therefore, for a model that has high likelihood value for some given data, it would
be closer to our underlying distribution of the data.

So, in our learning problem, we are interested in the likelihood of the data, when
a model is given, M, that is, ()|P D M . For our convenience, we usually use
log-likelihood denoted as () ()| log |l D M P D M= . We also define log-loss as the
negative of log-likelihood. Log-loss is an example of a loss function. A loss function,

()|loss Mξ , determines the loss that our model makes on a particular data point, ξ
. Therefore, for better learning, we try to find a model that minimizes the expected
loss, also known as risk:

! "* |
P

E loss M# #$ %& '!

However, as *P is not known, we can approximate this expected loss by averaging
over the sampled data points:

() ()1| |D
D

E loss M loss M
D ξ

ξ ξ=⎡ ⎤⎣ ⎦ ∑
ε

Model Learning – Parameter Estimation in Bayesian Networks

[162]

Taking the example of log-loss and considering a data set, [] [] []{ }1 , 2 ,...,D Mξ ξ ξ= , we
have the following equation:

() ()
1

|
M

m
P D M P m Mξ

=

=∏

Taking the logarithm of the preceding expression, we get the following equation:

() ()
1

log | log
M

m
P D M P m Mξ

=

=∏

As we saw earlier, this term is the negative of the empirical log-loss. Hence, we can
easily get a good intuition of empirical risk using log-loss as the loss function.

Predicting the specific probability values
In the preceding section, we tried to learn the complete underlying probability
distribution, *P . For this, we used the log-likelihood function to select the most
accurate model. The log-likelihood function uses complete assignments to compute
the probability of how likely it is for the data represented by our model. Thus,
models learned in this way can be used to answer a whole range of conditional or
marginal probability queries over the variables of the model.

In many cases, though, we are more interested in answering a single conditional
probability. Let's take the example of a simple classification problem using the Iris
dataset for the classification of flower species. We are provided with five variables,
namely sepallength, sepalwidth, petallength, petalwidth, and flowerspecies.
Now, we want to predict the species of a flower using the sepal length, sepal
width, petal length, and petal width of a given flower. So, in this case, we always
want to answer a specific conditional distribution over the variables, that is,
()| , , ,P flowerspecies sepallength sepalwidth petallength petalwidth . Rather in this case,

we are interested in the MAP queries over the variable, flowerspecies, when all the
other variables are given. In real life, we have a lot of problems like this where we
want to answer only some specific queries from our learned model.

Therefore, in such cases, we can select a different loss function that would better
represent our problem. For example, in this case, we can use a classification error,
also known as the 0/1 error:

! " ! "# $,
1

x y P P
E h x y% &'()! !

"

Chapter 5

[163]

Here, ()1 . is an indicator function; ()Ph x% represents the predicted value using the
hypothesis, Ph % ; and y is the actual or target value.

In simple terms, this error function simply computes the probability over all
terms sampled from P% , for which our model selects the wrong label. This error
function is good for the case when we want to predict a single variable, or maybe a
couple of variables. However, in cases when we want to predict a large number of
variables, let's say in the case of image segmentation, we would not like to penalize
the whole model for wrongly predicting the value of a single pixel. One suitable
error function in such cases is Hamming loss, which also does consider the number
of variables in each prediction that were predicted wrong.

Therefore, if we know in advance that we are going to use our model for a specific
prediction task, we can always optimize our model for those variables.

Knowledge discovery
Another problem that we might want to tackle through learning is that of knowledge
discovery, in which we would like to know the relationships between the variables.
So, in this case, we mostly focus on predicting the correct network structure. Though,
as it turns out, it is very difficult to achieve this with good confidence. So, in the
cases where we have a large amount of data, we may be able to construct a network
structure with good confidence. In the case of Bayesian networks, there are a lot of
I-equivalent structures for any given structure. Therefore, we can at the best hope
to learn an I-equivalent structure from the data. Now, coming to the case when we
don't have enough data, we will not be able to say anything very confidently about
the relationship between the variables. For example, let's say that our data shows a
weak correlation between two variables, but as we don't have enough data, we can't
confirm this as it might be due to some noise in our data.

Thus, we can conclude that in the case of a knowledge discovery task, the most
important thing is to focus on the confidence with which we predict the network
structure. In the later sections, we will discuss how to approach such problems.

Learning as an optimization
In the previous sections, we saw various ways of evaluating our models and also
defining the loss functions that we want to minimize. This suggests that a learning
task can be viewed as an optimizations problem. In an optimization problem, we
are provided with a hypothesis space, which in this case, is the set of all possible
models along with an objective function, on the basis of which we will select the
best-representing model from the hypothesis space. In this section, we will discuss
the various choices of objective functions and how they affect our learning task.

Model Learning – Parameter Estimation in Bayesian Networks

[164]

Empirical risk and overfitting
Let's consider the task of selecting a model, M, which optimizes the expectation

of some loss function, ! "* |
P

E loss M# #$ %& '!

. As we don't know the value of *P , we
generally use the dataset, D, which we have to get an empirical estimate of the
expectation. Using D, we can define an empirical distribution,

D̂P , as follows:

() []{ }1ˆ 1D
m

P A m A
M

ξ= ∑ ε

Putting this in simple words, for some event, A, we assign its probability to be the
number of times we have seen this event in our samples. Therefore, as we have more
and more samples from the original distribution, *P , the value of ()D̂P A keeps
getting closer and closer to the original distribution.

However, there are a few drawbacks to this approach that we need to keep in mind
to avoid getting poor results. Think of a case when we have a lot of variables in the
network, let's say n. Considering that all the variables can only take two different
states, our joint distribution over these variables will have 2n different assignments.
Now, let's say that we are provided with 1000 distinct samples from the original
distribution. If we try to find the empirical distribution using this data, we will be
assigning a probability of 0.001 to each of the 1000 assignments that were given to
us and will assign 0 to the rest 2 1000n − assignments. In real life, we want to predict
over new data using our learned model, and it is highly possible that our training
data doesn't have all the possible events. In such cases, our trained model will overfit
to the training data as it assigns 0 probability to all the events that are not present in
the training data.

So, to avoid overfitting, we can limit our hypothesis space to simpler models. This
leads to yet another problem; with limited hypothesis space, we might not be
able to find a model that will fit perfectly into the original distribution, even if we
are provided with infinite data. This type of limitation in learning introduces an
inherent error in the learning model, which is known as bias. Conversely, if we
have a hypothesis space with more complex models, we can correctly learn the
actual distribution, *P . In that case, if we also have less data, we will get too many
fluctuations in our predictions. As a result, we will have a learned model with
high variance.

In conclusion, we will always have a trade-off between the bias and variance in our
learned models. However, with very limited data, variance turns out to be more
dangerous, as it is not able to learn the actual distribution, *P , at all.

Chapter 5

[165]

Discriminative versus generative training
Until now, we have been trying to learn the model to predict all the variables. This
kind of learning is known as generative learning, as we are trying to generate all the
variables, the ones we are trying to predict as well as the ones that we want to use
as features. However, as we discussed earlier, in many cases, we already know the
conditional distribution that we want to predict. So, in such cases, we try to predict
a model so that ()|P X Y% is as close as possible to ()* |P X Y . This is known as
discriminative learning.

Learning task
As discussed in the previous sections, we must formalize our learning task. The
inputs for our learning task are as follows:

• Constraints for our model, M% , which will be used to define our
hypothesis space

• A set of independent and identically distributed samples,
[] [] []{ }1 , 2 ,...,D d d d M= , from the original distribution,

The output of our learning will either be the network structure, the parameters, or
both. Let's discuss all these in a bit more detail.

Model constraints
Our definition of a hypothesis space depends on several factors. One of the most
important factors is the problem that we are trying to solve. There are various kinds
of problems that we might face. So, in some cases, we might already know the
network structure and might just want to learn the parameters of the network. In
some other cases, it is also possible that we want to learn both, the network structure
as well as the parameter of the network. Or, it is also possible that we don't even
know all the variables of the model that we are trying to learn. In general, the lesser
the information we have, the more we have to consider a wider hypothesis space
because we need to consider more models to find the one that is the closest.

Other than this, we also discussed how the constraints on the hypothesis space
affect the bias and variance in the learned model. One more thing to consider while
defining the hypothesis space is the cost of computation, as in a hypothesis space
having more complex models, it is generally more difficult to find an optimal model.

Model Learning – Parameter Estimation in Bayesian Networks

[166]

Data observability
One other condition that affects our learning task is the extent of observability of our
training data. In some cases, it is possible that we might not have the complete data
over all the variables, or we might have hidden variables in the actual model, and
hence, they may never have been observed.

In many real-life situations, it is not possible to measure all the variables of our
model. In such cases, dealing with missing data is critical. We can take the example
of designing a model to diagnose a disease in a patient based on some tests. In this
case, we can't do all the tests on a patient. Also, we can't say with certainty which
disease he has.

Parameter learning
In the previous sections, we have been discussing the general concepts related
to learning. Now, in this section, we will be discussing the problem of learning
parameters. In this case, we will already know the networks structure and we will
have a dataset, [] [] []{ }1 , 2 ,...,D Mξ ξ ξ= , of full assignment over the variables.
We have two major approaches to estimate the parameters, the maximum likelihood
estimation and the Bayesian approach.

Maximum likelihood estimation
Let's take the example of a biased coin. We want to predict the outcome of this coin
using previous data that we have about the outcomes of tossing it. So, let's consider
that, previously, we tossed the coin 1000 times and we got heads 330 times and got
tails 670 times. Based on this observation, we can define a parameter, θ , which
represents our chances of getting a heads or a tails in the next toss. In the most
simple case, we can have this parameter, θ , to be the probability of getting a heads
or tails. Considering θ to be the probability of getting a heads, we have 0.33θ =
. Now, using this parameter, we are able to have an estimate of the outcome of our
next toss. Also, as we increase the number of data samples that we used to compute
the parameter, we will get more confident about the parameter.

Chapter 5

[167]

Putting this all formally, let's consider that we have a set of independent and
identically distributed coin tosses, [] [] []{ }1 , 2 ,...,D Mξ ξ ξ= . Each []iξ can either
take the value heads, (H), with the probability, θ , or tails, (T), with probability,
()1 θ− . We want to find a good value for the parameter, θ , so that we can predict the
outcomes of the future tosses. As we discussed in the previous sections, we usually
approach a learning task by defining a hypothesis space, Θ , and an optimization
function. In this case, as we are trying to get the probability of a single random
variable, we can define our hypothesis space as follows:

[]0,1Θε

Now, let's take an example that we have, namely { }, , , , , , ,D T H H T T T H T= . When
the value of θ is given, we can compute the probability of observing this data.
We can easily say that []() ()1 1P D T θ= = − . Also, []()2P D H θ= = , as all the
observations are independent. Now, consider the following equation:

() () ()()() ()
()53

| 1 1 1 1 1

1

P D θ θ θθ θ θ θ θ θ

θ θ

= − − − − −

= −

Model Learning – Parameter Estimation in Bayesian Networks

[168]

This is the probability of our data to conform with our parameter, θ , which is also
known as the likelihood, as we had discussed in the earlier section. Now, as we
want our parameter to agree with the data as much as possible, we would like the
likelihood, ()|P D θ , to be as high as possible. Plotting the curve of ()|P D θ within
our hypothesis space, we get the following curve:

Fig 5.1: Curve showing the variation of likelihood with θ
From the curve in Fig 5.1, we can now easily see that we get the maximum likelihood
at 0.4θ = .

Now, let's try to generalize this computation. Also, let's consider that in our dataset,
we have HM number of heads and TM number of tails:

[]{ }
0
1

M

H
i

M D i H
=

= =∑

[]{ }
0
1

M

T
i

M D i T
=

= =∑

From the example we saw earlier, we can now easily derive the following equation:

() ()| 1 TH
MMP D θ θ θ= −

Chapter 5

[169]

Now, we would like to maximize this likelihood to get the most optimum value
for θ . However, as it turns out it, it is much easier to work with log-likelihood,
and as log-likelihood is monotonically related to the likelihood function, the
optimum value of θ for the likelihood function would be the same as that for the
log-likelihood function. So, first taking the log of the preceding function, we get the
following equation:

() ()log | log log 1H HP D M Mθ θ θ= + −

To find the maxima, we now take the derivative of this function and equate it to 0.
We get the following result:

() 0ˆ ˆ1
H TM M
θ θ

− =
−

ˆ H

H T

M
M M

θ =
+

Hence, we get our maximum likelihood parameter for the generalized case.

Maximum likelihood principle
In the preceding section, we saw how to apply the maximum likelihood estimator in
a simple single variable case. In this section, we will now discuss how to apply this
to a broader range of learning problems and how to use this to learn the parameters
in the case of a Bayesian network.

Now, let's define our generalized learning problem. We assume that we are provided
with a dataset, [] [] []{ }1 , 2 ,...,D Mξ ξ ξ= , containing the IID samples over a set of
variables, χ . We also assume that we know the sample space of the data, that is, we
know the variables and the values that it can take. For our learning, we are provided
with a parametric model, whose parameters we want to learn. A parametric model
is defined as a function, ()|P ξ θ , that assigns a probability to ξ , when a set of
parameters is given, θ . As this parametric model is a probability distribution, it
should be non-negative and should sum up to 1:

()| 1P
ξ

ξ θ =∑

Model Learning – Parameter Estimation in Bayesian Networks

[170]

As we have defined our learning problem, we will now move on to applying our
maximum likelihood principle on this. So, first of all, we need to define the parameter
space for our model. Let's take a few examples to make defining the space clearer.

Let's consider the case of a multinomial distribution, P, which is defined over a set
of variables, X, and can take the values, 1 2, ,..., Kx x x . The distribution is represented
as θ Rε :

()| k
kP x if x xθ θ= =

The parameter space, Θ , for this model can now be defined as follows:

[]0,1 | 1K
i

i
θ θΘ = =∑ε

We can take another example of a Gaussian distribution on a random variable, X,
such that X can take values from the real line. The distribution is defined as follows:

()
()2

221| ,
2

x

P x e
µ
σµ σ

π

−
−

=

For this model, our parameters are µ and σ . On defining θ = ,µ σ< > , our
parameter space can be defined as +Θ = ×R R .

Now that we have seen how to define our parameter space, the next step is to define
our likelihood function. We can define our likelihood function on our data, D, as
()|P D θ and it can be expressed as follows:

() []()| |
m

P D P mθ ξ θ=∏

Now, using the earlier parameter space and likelihood functions, we can move
forward and compute the maxima of the likelihood or log-likelihood function to find
the most optimal value of our parameter, θ . Taking the logarithm of both sides of
the likelihood function, we get the following equation:

() []() []() []()log | log 1 | log 2 | ... log |P D P P P Mθ ξ θ ξ θ ξ θ= + + +

Chapter 5

[171]

Now, let's equate this with 0 to find the maxima:

[]()() []()() []()()log 1 | log 2 | ... log | 0P P P Mξ θ ξ θ ξ θ+ + + =

We can then solve this equation to get our desired θ .

The maximum likelihood estimate for
Bayesian networks
Let's now move to the problem of estimating the parameters in a Bayesian network.
In the case of Bayesian networks, the network structure helps us reduce the
parameter estimation problem to a set of unrelated problems, and each of these
problems can be solved using techniques discussed in the previous sections.

Let's take a simple example of the network, X Y→ . For this network, we can think
of the parameters, 0xθ and 1xθ , which will specify the probability of the variable X;

1 0|y xθ and 0 0|y xθ , which will specify the probability of ()| 0P Y X = , and 1 1|y xθ and 0 1|y xθ
representing the probability of ()| 0P Y X = .

Consider that we have the samples in the form of [] [](),x m y m , where []x m
denotes assignments to the variable, X, and []y m denotes assignments to the
variable, Y. Using this, we can define our likelihood function as follows:

() [] []()
1

| , |
M

m
P D P x m y mθ θ

=

=∏

Utilizing the network structure, we can write the joint distribution, P(X, Y), as follows:

() () (), |P X Y P X P Y X= ×

Model Learning – Parameter Estimation in Bayesian Networks

[172]

Replacing the joint distribution in the preceding equation using this product form,
we get the following equation:

() []() [] []()

[]() [] []()

1

1 1

| | | ,

| | ,

M

m

M M

m m

P D P x m P y m x m

P x m P y m x m

θ θ θ

θ θ

=

= =

=

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∏

∏ ∏

So, we see that the Bayesian network's structure helped us decompose the likelihood
function in simpler terms. We now have separate terms for each variable, each
representing how well it is predicted, when its parents and parameters are given.

Here, the first term is the same as what we saw in previous sections. The second term
can be decomposed further:

[] []()|
1

| ,
M

Y X
m
P y m x m θ

=

=∏

[] []()
[]

[] []()
[]0 1

| |
: :

| , | ,Y X Y X
m x m x m x m x

P y m x m P y m x mθ θ
= =

= ⋅∏ ∏

[] []()
[]

[] []()
[]

0 1
0 1

| |
: :

| , | ,Y x Y x
m x m x m x m x

P y m x m P y m x mθ θ
= =

= ⋅∏ ∏

Thus, we see that we can decompose the likelihood function into a term for each
group of parameters. Actually, we can simplify this even further. Just consider a
single term again:

[] []()0|
1

| , Y x
m
P y m x m θ

=
∏

Chapter 5

[173]

These terms can take only two values. When [] 0y m y= , it is equal to 0 0|y xθ , and when
[] 1y m y= , it is equal to 1 0|y xθ . Thus, we get the value, 0 0|y xθ , in cases when [] 0x m x=

and [] 0y m y= . Let's denote this number by 0 0,M x y⎡ ⎤⎣ ⎦ . Thus, we can rewrite the
earlier equation as follows:

[] []()
[]

0
0

0 1 0 0

1 0 0 0|
:

, ,
| ,

| |Y x
m x m x

M x y M x y
P y m x m

y x y x
θ θ θ

=

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦= = ⋅∏

From our preceding discussion, we know that to maximize the likelihood, we can set
the following equation:

1 0

0 1

0 1 0 0|

0 1

0

,
, ,

,

y x

M x y
M x y M x y

M x y
M x

θ
⎡ ⎤⎣ ⎦=

⎡ ⎤ ⎡ ⎤+⎣ ⎦ ⎣ ⎦
⎡ ⎤⎣ ⎦=
⎡ ⎤⎣ ⎦

Now, using this equation, we can find all the parameters of the Bayesian network by
simply counting the occurrence of different states of variables in the data.

Now, let's see some code examples for how to learn parameters using pgmpy:

In [1]: import numpy as np
In [2]: import pandas as pd
In [3]: from pgmpy.models import BayesianModel
In [4]: from pgmpy.estimators import MaximumLikelihoodEstimator

Generating some random data
In [5]: raw_data = np.random.randint(low=0, high=2, size=(100, 2))
In [6]: print(raw_data)
Out[6]:
array([[1, 1],
 [1, 1],
 [0, 1],
 ...,
 [0, 0],
 [0, 0],
 [0, 0]])
In [7]: data = pd.DataFrame(raw_data, columns=['X', 'Y'])
In [8]: print(data)
Out[8]:
 X Y
0 1 1

Model Learning – Parameter Estimation in Bayesian Networks

[174]

1 1 1
2 0 1
3 1 0
..
996 1 1
997 0 0
998 0 0
999 0 0

[1000 rows x 2 columns]

Two coin tossing model assuming that they are dependent.
In [9]: coin_model = BayesianModel([('X', 'Y')])
In [10]: coin_model.fit(data,
 estimator=MaximumLikelihoodEstimator)
In [11]: cpd_x = coin_model.get_cpds('X')
In [12]: print(cpd_x)
Out[12]:
╒═════╤═════╕
│ x_0 │ 0.46│
├─────┼─────┤
│ x_1 │ 0.54│
╘═════╧═════╛

Similarly, we can take the example of the late-for-school model:

In [13]: raw_data = np.random.randint(low=0, high=2,

 size=(1000, 6))
In [14]: data = pd.DataFrame(raw_data, columns=['A', 'R', 'J',
 'G', 'L', ‘Q’])

In [15]: student_model = BayesianModel([('A', 'J'), ('R', 'J'),
 ('J', 'Q'), ('J', 'L'),

 ('G', 'L')])
In [16]: student_model.fit(data,
 estimator=MaximumLikelihoodEstimator)
In [17]: student_model.get_cpds()
Out[17]:
[<TabularCPD representing P(A: 2) at 0x7f9286b1fa113>,
 <TabularCPD representing P(R: 2) at 0x7f9283b12312>,
 <TabularCPD representing P(G: 2) at 0x7f9383b15114>
 <TabularCPD representing P(J: 2 | A: 2, R: 2) at 0x7f9286bw3329>,
 <TabularCPD representing P(Q: 2 | J: 2) at 0x7f92863kj3294>,

 <TabularCPD representing P(L: 2 | G: 2, J: 2) at

 0x7f9282kj49345>]

So, learning parameters from data is very easy in pgmpy and requires just a call to the
fit method.

Chapter 5

[175]

Bayesian parameter estimation
In the preceding section, we discussed the method of estimating parameters using
the maximum likelihood, but as it turns out, our maximum likelihood method has a
lot of drawbacks. Let's consider the case of tossing a fair coin 10 times. Let's say that
we got heads three times. Now, for this dataset, if we go with maximum likelihood,
we will have the parameter, 0.3headθ = , but our prior knowledge says that this
should not be true. Also, if we get the same results of tossing with a biased coin, we
will have the same parameter values. Maximum likelihood fails in accounting for the
situation where, because of our prior knowledge, the probability of getting a head in
the case of a fair coin should be more or less than in the case of a biased coin, even if
we had the same dataset.

Another problem that occurs with a maximum likelihood estimate is that it fails to
distinguish between the cases when we get three heads out of 10 tosses and when we
get 30000 heads out of 100000 tosses. In both of these cases, the parameter, headsθ , will
be 0.3 according to maximum likelihood, but in reality, we should be more confident
of this parameter in the second case.

So, to account for these errors, we move on to another approach that uses Bayesian
statistics to estimate the parameters. In the Bayesian approach, we first create a
probability distribution representing our prior knowledge about how likely are we
to believe in the different choices of parameters. After this, we combine the prior
knowledge with the dataset and create a joint distribution that captures our prior
beliefs, as well as information from the data. Coming back to the example of coin
flipping, let's say that we have a prior distribution, ()P θ . Also, from the data, we
define our likelihood as follows:

[]() { []
[] 1

01| if x m x
if x m xP x m θ

θθ =
− =

=

Now, we can use this to define a joint distribution over the data, D, and the
parameter, θ :

[] [] []() [] [] []() ()

() []()

() [] () []
1

01

1 , 2 ,..., , 1 , 2 ,..., |

|

1

M

m
MM

P x x x m P x x x m P

P P x m

P

θ θ θ

θ θ

θ θ θ
=

=

=

= −

∏

Model Learning – Parameter Estimation in Bayesian Networks

[176]

Here, []1M is the number of heads in the data and []0M is the number of tails.
Using the preceding equation, we can compute the posterior distribution over θ :

[] [] []() [] [] []() ()
[] [] []()

| 1 , 2 ,..., |
| 1 , 2 ,...,

| 1 , 2 ,...,
P x x x M P

P x x x M
P x x x M

θ θ θ
θ

θ
=

Here, the first term of the numerator is known as the likelihood, the second is known
as the prior, and the denominator is the normalizing factor.

In the case of Bayesian estimation, if we take a uniform prior, it will give the same
results as the maximum likelihood approach. So, we won't be selecting any particular
value of in this case. We will try to predict the outcome of the next coin toss, when
all the previous data samples are given:

[] [] [] []()1 1 , 2 ,...,P x M x x x M+ =

[] [] [] []() [] [] []()1 | , 1 , 2 ,..., | 1 , 2 ,...,P x M x x x M P x x x M dθ θ θ+∫

[]() [] [] []()1 | | 1 , 2 ,...,P x M P x x x M dθ θ θ= +∫

In simple words, here we are integrating our posterior distribution over θ to find
the probability of heads for the next toss.

Now, applying this concept of the Bayesian estimator to our coin tossing example,
let's assume that we have a uniform prior over θ , which can take values in the
interval, [0, 1]. Then, [] [] []()| 1 , 2 ,...,P x x x Mθ= will be proportional to the
likelihood, [] [] []() [] () []011 , 2 ,..., | 1 MMP x x x M θ θ θ= − . Let's put this value in
the integral:

() [] [] []() [] [] []()
[] () []011 11 | 1 , 2 ,..., 1

1 , 2 ,...,
MMP X M x x x x M d

P x x x M
θ θ θ θ+ = = ⋅ − ⋅∫

Chapter 5

[177]

Solving this equation, we finally get the following equation:

() [] [] []() []
[] []

1 1 1
1 | 1 , 2 ,...,

1 0 2
M

P X M x x x x M
M M

+
+ = =

+ +

This prediction is known as the Bayesian estimator. We can clearly see from
the preceding equation that as the number of samples increase, the parameters
comes closer and closer to the maximum likelihood estimate. The estimator that
corresponds to a uniform prior is often referred to as Laplace's correction.

Priors
In the preceding section, we discussed the case when we have uniform priors. As
we saw, in the case of uniform priors, the estimator is not very different from the
maximum likelihood estimator. Therefore, in this section, we will move on to discuss
the case when we have a non-uniform prior. We will show an example over our coin
tossing example, using our prior to be a Beta distribution.

A Beta distribution is defined in the following way:

! " ! " ! " 01
11

1 0, 1Beta if p
##$ # # $ %$ $

&
' &!

Here, 0α and 1α are the parameters, and the constant, γ , is a normalizing constant,
which is defined as follows:

()
() ()

1 0

1 0

γ
α α
α α

Γ +
=
Γ Γ

Here, the gamma function, ()xΓ , is defined as follows:

() 1
0

.x tx t e dt
∞ − −Γ = ∫

Model Learning – Parameter Estimation in Bayesian Networks

[178]

For now, before we start our observations, let's consider that the hyper parameters,
0α and 1α , correspond to the imaginary number of tails and heads. To make

our statement more concrete, let's consider the example of a single coin toss and
assume that our distribution, () ()0 1,P Beta αθ α= . Now, let's try to compute the
marginal probability:

[]() []() ()

()

11 1
0
1

0

1

1 0

1 1 | .P X x P X x P d

P d

θ θ

α
α α

θ

θ θ θ

= = =

= ⋅

=
+

∫
∫

So, this conclusion shows that our statement about the hyper parameters is correct.
Now, extending this computation for the case when we saw M[1] heads and M[0]
tails, we get the following equation:

[] [] []() [] [] []() ()
[] () [] ()
[] () []

[] () []()

01

01

0

0 111

0 11 1

0 1
1

| 1 , 2 , , x 1 , 2 , , |

1 1

1

1 1 1

MM

MM

M

P x x M P x x x M P

Beta M

αα

αα

α

θ θ θ

θ θ θ θ

θ θ

α θ

−

+ −+ −

+ −

− ⋅ −

= −

= + −

∝

−

∝… …

This equation shows that if the prior distribution is a Beta distribution, the posterior
distribution also turns out to be a Beta distribution. Now, using these properties, we
can easily compute the probability over the next toss:

[] [] [] []() []11 1
1 | 1 , 2 , ,

M
P X M x x x x M

M
α
α
+

+ = =
+

…

Chapter 5

[179]

Here,
1 0α α α= + , and this posterior represents that we have already seen

[]1 1Mα + heads and []0 0Mα + tails.

Bayesian parameter estimation for Bayesian
networks
Again, let's take our simple example of the network, X Y→ , and our training
data, [] [] [] [] [] []{ }1 , 1 , 2 , 2 , , ,D X Y X Y X M Y M= < > < > < >K . We also have
unknown parameters, Xθ and |Y Xθ . We can think of a dependency network over
the parameters and data, as shown in Fig 5.2.

This dependency structure gives us a lot of information about datasets and our
parameters. We can easily see from the network that different data instances are
independent of each other if the parameters are given. So, []X m and []Y m are
d-separated from []X m′ and []Y m′ when Xθ and |X Yθ are given.

Also, when all the []x m and []y m values are observed, the parameters, Xθ and
|X Yθ , are d-separated. We can very easily prove this statement, as any path

between Xθ and |X Yθ is in the following form:

[] [] |X Y XX m Y mθ θ→ → ←

When []X m and []Y m are observed, influence cannot flow between Xθ and
|Y Xθ . So, if these two parameters are independent a priori then they will also be

independent a posteriori. This d-separation condition leads us to the following result:

() () ()| |, | | |X Y X X Y XP D P D P Dθ θ θ θ=

Model Learning – Parameter Estimation in Bayesian Networks

[180]

This condition is similar to what we saw in the case of the maximum likelihood
estimation. This will allow us to break up the estimation problem into smaller and
simpler problems, as shown in the following figure:

Fig 5.2: Network structure of data samples and parameters of the network

Now, using the preceding results, let's formalize our problem and see how the results
help us solve it. So, we are provided with a network structure, G, whose parameters
are θ . We need to assign a prior distribution over the network parameters, ()P θ .
We define the posterior distribution over these parameters as follows:

() () ()
()
|

|
P D P

P D
P D
θ θ

θ =

Here, the term, ()P θ , is our prior distribution, ()D |P θ is the likelihood function,
()| DP θ is our posterior distribution, and P(D) is the normalizing constant.

As we had discussed earlier, we can split our likelihood function as follows:

() ()|D | |
i XiX Pa

i
P P Dθ θ=∏

Chapter 5

[181]

Also, let's consider that our parameters are independent:

() ()|i XiX Pa
i

P Pθ θ=∏

Combining these two equations, we get the following equation:

() () () ()| |
1| |

i X i Xi ii X Pa X Pa
i

P D P D P
P D

θ θ θ⎡ ⎤= ⎣ ⎦∏

In the preceding equation, we can see that each of the product terms is for a local
parameter value. With this result, let's now try to find the probability of a new data
instance given our previous observations:

[] []() [] []() ()1 , y 1 | 1 , 1 | , |P x M M D P x M y M D P D dθ θ θ+ + = + +∫

As we saw earlier, all the data instances are independent. If the parameter is given,
we get the following equation:

[] []()
[] []()
[]() [] []()|

1 , y 1 | ,

1 , y 1 |

1 | 1 | 1 ,X Y X

P x M M D

P x M M

P x M P y M x M

θ

θ

θ θ

+ +

+ +

+ + +

We can also decompose the posterior probability as follows:

[] []()1 , 1 |P x M y M D+ +

[]() [] []() () ()|1 | 1 | 1 , | |X Y X X Y X YP x M P y M x M P D P D d dθ θ θ θ θ θ= + + +∫∫

[]() ()() [] []() ()()|1 | | 1 | 1 , |X X X Y X Y YP x M P D d P y M x M P D dθ θ θ θ θ θ= + + +∫ ∫

Now, using this equation, we can solve the prediction problem for each of the
variables separately.

Model Learning – Parameter Estimation in Bayesian Networks

[182]

Now, let's see some examples of the network's learning parameters using this
Bayesian approach on the late-for-school model:

In [1]: import numpy as np
In [2]: import pandas as pd
In [3]: from pgmpy.models import BayesianModel
In [4]: from pgmpy.estimators import BayesianEstimator

Generating some random data
In [5]: raw_data = np.random.randint(low=0, high=2,

 size=(1000, 6))
In [6]: print(raw_data)
Out[6]:
array([[1, 0, 1, 1, 1, 0],
 [1, 0, 1, 1, 1, 1],
 [0, 1, 0, 0, 1, 1],
 ...,
 [1, 1, 1, 0, 1, 0],
 [0, 0, 1, 1, 0, 1],
 [1, 1, 0, 0, 1, 1]])
In [7]: data = pd.DataFrame(raw_data, columns=['A', 'R', 'J',
 'G', 'L', 'Q'])

Creating the network structures
In [8]: student_model = BayesianModel([('A', 'J'), ('R', 'J'),
 ('J', 'Q'), ('J', 'L'),

 ('G', 'L')])
In [9]: student_model.fit(data, estimator=BayesianEstimator)
In [10]: student_model.get_cpds()
Out[10]:
[<TabularCPD representing P(A: 2) at 0x7f92892304fa>,
 <TabularCPD representing P(R: 2) at 0x7f9286c9323b>,
 <TabularCPD representing P(G: 2) at 0x7f9436c9833b>,
 <TabularCPD representing P(J: 2 | A: 2, R: 2) at 0x7f9286s23a34>,
 <TabularCPD representing P(L: 2 | J: 2, G: 2) at

0x7f9286a932b30>,
 <TabularCPD representing P(Q: 2 | J: 2) at 0x7f9286d12904>]

In [11]: print(student_model.get_cpds('D'))
Out[11]:
╒═════╤═════╕

╘═════╧═════╛

Chapter 5

[183]

╒═════╤═════╕
│ D_0 │ 0.44│
├─────┼─────┤
│ D_1 │ 0.56│
╘═════╧═════╛

Therefore, to learn the data using the Bayesian approach, we just need to pass the
estimator type BayesianEstimator.

Structure learning in Bayesian networks
In the previous sections, we considered that we already know the network structure
and we tried to estimate the parameters of the network using the data. However,
it is quite possible that we might neither know the network structure nor have the
domain knowledge to construct the network. Hence, in this section, we will discuss
constructing the model structure when the data is given.

Constructing the model from the data is a difficult problem. Let's take an example of
tossing two coins and representing the outcome of the first with the variable, X, and
the second with the variable, Y. We know that if the coins are fair, these two random
variables should be independent of each other. However, to get this independence
condition just from the data, we need to have all these outcomes equal number of
times in the data that we will rarely see in real life.

So, in general, we need to make some assumptions about the dependencies. The
assumptions that we make will largely depend on our learning task, as we discussed
in the previous sections. Now, in the case of knowledge discovery, we would like
to know the dependencies between the variables; therefore, we would like our
network structure to be as accurate as possible. We know that each distribution can
have many P-maps; therefore, the best we can do is get an I-equivalent structure
of the original network, *G . As we mentioned earlier, it is really hard to get the
exact network structure, so we will often have a situation where we have to decide
whether we want to include a less-probable edge in our model or not. Although, if
we include too many or very few edges, we will end up not learning a good model.
Therefore, this decision usually depends on our application.

Other than knowledge discovery, we very often use the models for density estimation.
In this case, we would like to learn a model that should be able to learn the underlying
probability distribution, *P , using our model, and should be able to make predictions
over new data points. We may think that in this case, adding less-probable edges to
the model will help us learn, as we should be able to learn *P using a more complex
model. However, it turns out that our intuition is wrong in this case.

Model Learning – Parameter Estimation in Bayesian Networks

[184]

Let's get back to our two-coin tossing example and consider that our dataset
consists of 50 samples with the following frequencies: 11 heads/heads, 10 heads/
tails, 14 tails/heads, and 15 tails/tails. As all the frequencies are not equal, the
data suggests that the two variables, X and Y, are not independent. So, let's
consider that while learning using this data, we added an edge between X and Y.
In this case, using the maximum likelihood estimator, we get the following
parameters: () 0.42P X H= = , () 0.58P X T= = , ()| 0.22P Y H X H= = = ,
()| 0.2P Y T X H= = = , ()| 0.28P Y H X T= = = , and ()| 0.3P Y T X T= = = . Whereas,

in a case when we do not consider any edges between X and Y, we get the following
parameters for Y: () 0.5P Y H= = and () 0.5P Y T= = . It was definitely possible for
the probabilities to be skewed, even when we didn't consider any edges between
the two variables. In the case of a more complex model, it is more probable that the
parameters will be more skewed. This happens because in more complex models,
we have lesser data to compute the parameters because of the conditioning. So, for
example, while computing ()|P Y T X H= = , we will only consider data samples
for which X H= . Hence, we are left only with 29 samples; whereas in the case of
the model when we had no edges, we considered all 50 samples for computing the
probability values.

Hence, it's often better to consider simpler models in the case of density estimation
problems. A simpler model might not be able to represent the underlying
distribution, *P , very well, but it can be a much better model to generalize over the
dataset and will give much better results on new data points.

Methods for the learning structure
In general, there are are three main ways to learn structure. We will be giving
a short introduction to each of them in this section; we will go into details in the
later sections.

• Constraint-based structure learning: The constraint-based structure learning
method works on the basis of considering a Bayesian network to be a set of
dependence conditions between the random variables. So, in this method, we
try to find the dependence conditions from the data given to us. Using these
conditions, we then try to construct a network. One major drawback of this
method is that if we get a wrong result from our dependence tests, our whole
learning fails.

Chapter 5

[185]

• Score-based structure learning: In this method, we consider the Bayesian
network as a statistical model. We then define a hypothesis space of possible
structures and a scoring function that tells us how close our structure is to
the underlying structure. Based on these results, we then try to select the
model that represents our underlying structure most closely. As this learning
method considers the whole model at once, it is able to give better results
than constraint-based learning. The problem with this model is that as our
hypothesis space can be very large, finding the most optimal structure is
hard. Hence, we generally resort to heuristic search techniques.

• Bayesian model averaging: In this method, we try to apply concepts similar
to the ones we saw in earlier sections to learn many structures, and then use
an ensemble of all these structures. As the number of network structures can
be huge, we sometimes have to use some approximate methods to do this.

Constraint-based structure learning
In this method, we try to construct the network structure using the independence
conditions obtained from the data. In other words, we try to construct a minimal
I-map, given the independence conditions.

Hence, once we have the independence conditions, we can construct a network
structure using the algorithm that we discussed earlier, but how do we answer these
independence queries from our data?

As we can expect, this question has been extensively studied in statistics and there
are numerous methods to answer such queries. We will discuss one of these queries,
which is known as the hypothesis testing method. We know that if two random
variables are independent, they should satisfy the following condition:

() () (),P X Y P X P Y= ⋅

So, in our case, we would like to check whether () () ()* , * *P X Y P X P Y= ⋅ .
However, in real-life problems, we don't know ()*P X and ()*P Y , and therefore,
we use the following equation to check our hypothesis:

() () ()ˆ ˆ* ,P X Y P X P Y= ⋅

Now, using the data samples, we can check whether this equation holds for our
data or not. To do this, we will need a decision rule that will tell us whether the two
variables are independent given the data samples.

Model Learning – Parameter Estimation in Bayesian Networks

[186]

A decision rule should basically compare the two distributions and be able to give a
result on whether the independence holds or not. If we go for a very liberal decision
rule, it will return the two variables to be independent even when they are not.
Similarly, if we consider a very tight-bound decision rule, it will result in saying
that the two variables are dependent even when they are independent. A standard
way to design a decision function is to measure the distribution's deviance from the
independence condition.

For two random variables, X and Y, to be independent, we can expect their count,
[],M x y in the dataset to be somewhere around () ()M P x P y⋅ ⋅ . Here, M is the total

number of data samples that we have. Specially, in the cases when M is large, this
condition should be satisfied. Based on this intuition, we will now derive a deviance
measure, commonly known as 2χ statistic:

()
[] () ()()

() ()2

2

,

ˆ ˆ,
ˆ ˆx y

M x y M P x P y
d D

M P x P yχ

− ⋅ ⋅
=

⋅ ⋅∑

We can clearly see here that when our data fits our independence assumptions
perfectly, ()2 0d D

χ
= , and the farther it is from our assumption, the greater value

it returns.

Another deviance measure technique based on counts is mutual information,
()ˆ ;

DP
I X Y , and is defined as follows:

() () [] []
[] []ˆ

,

,1; , log
DI P

x y

M x y
d D I X Y M x y

M M x M y
= = ∑

Now, using any such deviance measure, we can define a threshold based on which
our decision function will make decisions on whether two random variables are
independent or not:

() ()
(){,

if d D tindependent
d t dependent if d D tR D <=

>=

So, simply put, if the deviance measure is more than the threshold that we have
given, the decision function will return the variables as dependent, and if not, they
will be independent.

Chapter 5

[187]

Structure score learning
As we discussed earlier, the score-based method uses a score function to score all the
structures in our hypothesis space. Then, using the scores of all the models, we try
to select the most optimal structure. So, in this learning method, the most important
decision that we have to make is which scoring function to choose. Let's discuss two
of the most commonly-used scoring functions.

The likelihood score
As we discussed earlier, the likelihood function gives us the probability of our data
given the parameters of the model. So, we would like to select a model that has the
maximum likelihood. In the case of structure learning, we want to learn both, the
structure and the parameters of the structure. Therefore, our hypothesis space would
be much larger than what we saw in the case of parameter learning.

Let's denote our graph and its parameters as , GG θ< > . Now, we want to find the
value using the following equation:

() ()
,
max | , max max | ,

G G
G GG G

P D G P D G
θ θ

θ θ⎡ ⎤< > = < >⎢ ⎥⎣ ⎦

()ˆmax | , GG
P D G θ⎡ ⎤= < >⎣ ⎦

Here,
Ĝθ represents the maximum likelihood parameters for the graph, G. Therefore,

in simple words, we want to find a graph that has the maximum likelihood when we
use the maximum likelihood parameters for it.

To get more insight on this method, let's take the previous example of tossing two
coins. So, there are two possibilities for the network structure. One where both the
random variables, X and Y, are independent, and thus have no edges between them.
The other possibility is to have a network structure, where X is the parent to Y, that
is, X Y→ . Considering the network of the independent case to be 0G , we can get its
likelihood score as follows:

() [] []0
ˆ ˆ| log logx m y m

m
P D G θ θ= +∑

Model Learning – Parameter Estimation in Bayesian Networks

[188]

Considering the other model, X Y→ , as
1G , we can write its likelihood score

as follows:

() [] [] []1
ˆ ˆ| log logx m y m x m

m
P D G θ θ= +∑

Here, the θ̂ values are the maximum likelihood estimates. Let's consider the
difference of these likelihood scores:

() () [] [] []1 0
ˆ ˆ| | log logy m x m y m

m
P D G P D G θ θ− = −∑

() () [] []1 0 |
,

ˆ ˆ| | , log logy x y
x y y

P D G P D G M x y M yθ θ− = −∑ ∑

Now, let P̂ be the empirical distribution over the data. Therefore, we can say that
[] ()ˆ, ,M x y M P x y= ⋅ and also [] ()ˆM y M P y= ⋅ . Also, we have ()|

ˆ ˆ |y x P y xθ =
and ()ˆ ˆ

y P yθ = . Replacing these values in the preceding equation, we get the
following equation:

() () () ()
()

()

1 0
,

ˆ

ˆ |ˆ| | , log ˆ

;
x y

P

P y x
P D G P D G M P x y

P y
M I X Y

− =

= ⋅

∑

Here, ()ˆ ;PI X Y is the mutual information between X and Y in the distribution, P̂
. Hence, we see here that a higher mutual information means there is a stronger
connection between the variables, X and Y, and therefore, the model, 1G , is the more
optimal choice.

Chapter 5

[189]

We can actually generalize this for general networks. We already know that we can
write the log-likelihood function as follows:

() []
()

|u
1

ˆ ˆlog | , log
i i

G ii Xi

G i i x
i xu Val P a

P D n M x uθ θ
=

⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎣ ⎦

∑ ∑ ∑
ε

Let's consider a single term from the earlier equation and
ii XU Pa= :

[] () ()

() ()
()

()
()

() ()
() ()

() ()

() ()
()

() ()

| u

ˆ

ˆ ˆ

1 ˆ ˆ ˆ, log , log |

ˆ ˆ,ˆ , log ˆ ˆ

ˆ ,ˆ ˆ ˆ, log , logˆ ˆ

1ˆ; log ˆ

;

i i
i i i i

i i

i i i i

i

i i x i i i i
u x u x

i i i
i i

u x i i

i i
i i i i i

u x x ui i

i i iP
x i

i i iP P

M x u P x u P x u
M

P x u P x
P x u

P u P x

P x u
P x u P x u P x

P x P u

I X U P x
P x

I X U H X

θ =

⎛ ⎞
= ⎜ ⎟⎜ ⎟⎝ ⎠

⎛ ⎞
= + ⎜ ⎟

⎝ ⎠

= −

= −

∑∑ ∑∑

∑∑

∑∑ ∑ ∑

∑

Here, the mutual information is, ()ˆ ; 0i iPI X U = when 0
iX

Pa = . Also, the second
term in the equation, ()ˆ iPH X , doesn't depend on the network structure, and
therefore, we can ignore this term when comparing the likelihoods of models.

This result tells us that the likelihood score of the structure measures the strength of
the dependencies of the variables and their parents.

In this section, until now, we have seen how the likelihood score works. In the case of
generalizing the model for newer data points, the likelihood score gives poor results.
We can take the example of tossing two coins. As we saw earlier, the difference of
their likelihoods is as follows:

() () ()ˆ1 0| | ;PP D G P D G M I X Y− = ⋅

Model Learning – Parameter Estimation in Bayesian Networks

[190]

As we know, the mutual information between two variables is always non-negative.
Hence, the likelihood score of the network, X Y→ , will always be higher than the
case when the two variables are independent. Hence, we see that the likelihood score
always gives preference to more complex models over simpler models.

Also, as we never have completely independent variables in our data samples because
of the added noise, likelihood scores will always select a fully-connected graph over
all the variables, as it would be the most complex structure and, hence, would overfit
the training data and not give good prediction results over new queries.

Let's see an example of tossing two coins using pgmpy:

In [1]: import numpy as np
In [2]: import pandas as pd
In [3]: from pgmpy.models import BayesianModel
In [4]: from pgmpy.estimators import MaximumLikelihoodEstimator

Generating random data
In [5]: raw_data = np.random.randint(low=0, high=2,
 size=(1000, 2))
In [6]: data = pd.DataFrame(raw_data, columns=['X', 'Y'])

In [7]: coin_model = BayesianModel()
In [8]: coin_model.fit(data, estimator=MaximumLikelihoodEstimator)

In [9]: coin_model.get_cpds()
Out[9]:
[<TabularCPD representing P(X: 2) at 0x7f57bd99a588>,
 <TabularCPD representing P(Y: 2 | X: 2) at 0x7f57bd99a198>]

In [10]:coin_model.get_nodes()
Out[10]: ['X', 'Y']

In [11]: coin_model.get_edges()
Out[11]:[('X', 'Y')]

The Bayesian score
In the preceding section, we saw scoring based on likelihood and also saw how it is
prone to overfitting. Now, in this section, we will discuss another method of scoring
from a Bayesian perspective. As we saw in the case of parameter learning, we will
have to assign prior probabilities in this case as well. So, we will assign a prior
probability, P(G), to the structure of the network, and a prior probability, ()| GP θ , to
the parameters of this network structure.

Chapter 5

[191]

From the Bayes' rule, we know the following equation:

() () ()
()
|

G | D
P D G P G

P
P D

⋅
=

Here again, the denominator is just a normalizing factor, and therefore, we will
ignore it and define the Bayesian score as follows:

() () ()log G | D log | logP P D G P G= +

The addition of a prior distribution term in the scoring function allows us to have
control over the complexity of the model. Therefore, we assign smaller prior values
on more complex models, and thus, we are able to penalize the complex models.

The other term in our scoring function, ()log |P D G , takes care of the uncertainty in
the parameters:

() () ()| | , |
G

G G GP D G P D G P G dθ θ θ
Θ

= ∫

Here, ()| ,GP D Gθ is the likelihood of the data, when a network and its parameters
is given, and ()|GP Gθ is our prior distribution over different values of θ for a given
network, G.

The Bayesian approach does tell us that the parameter, θ̂ , is most probable when the
dataset D is given. However, the posterior also gives us a range of choices on how
likely each of these is. By integrating ()| ,GP D Gθ over Gθ , we are thus measuring
the expected likelihood over our parameters, Gθ .

Now, let's see how to compute the marginal likelihoods in simpler cases. Let's
consider a single random variable, X, with a prior distribution, ()1 0,Dirichlet α α
. Also, consider that our data set contains M[1] heads and M[0] tails. The maximum
likelihood is as follows:

() [] [] [] []1 01 0ˆ|
M MM M

P D
M M

θ
⎛ ⎞ ⎛ ⎞

= ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

Model Learning – Parameter Estimation in Bayesian Networks

[192]

Now, let's consider the marginal likelihood. We need to compute the probability over
our data, [] [] []()1 , 2 , ,P X X X M… , given the prior. Using the chain rule, we have the
following equation:

[] [] []() []() [] []() [] [] [] []()1 , 2 , , 1 2 | 1 | 1 , 2 , , 1P x x x M P x P x x P x M x x x M= ⋅ −… …

Using the Beta prior, we have the following equation:

[] [] [] []() [] 11
1 | 1 , 2 , ,

mM
P x m x x x m

m
α

α
+

+ =
+

…

Here, []1 mM is the number of heads in the first m samples of the dataset. We can take
an example of the dataset, , , , ,D H T T H H= :

[] [] []() 0 01 1 11 1 21 , 2 , , 5
1 2 3 4

P x x x α αα α α
α α α α α

+ + += ⋅ ⋅ ⋅ ⋅
+ + + +

…

Using the values,
1 0 1α α= = and

1 0 2α α α= + = , we have the following equation:

[] []1 2 3 1 2 12 0.017
2 3 4 5 6 720
⋅ ⋅ ⋅ ⋅

= =
⋅ ⋅ ⋅ ⋅

This value is significantly lower than the likelihood.

In general, for a binomial distribution with a Beta prior, we have the
following equation:

[] [] []() []() []()
()

1 1 0 0. . . 1 1 . . . 0 1
1 , 2 , ,

. . . 1
M M

P x x x M
M

α α α α
α α

⎡ ⎤ ⎡ ⎤+ − + −⎣ ⎦ ⎣ ⎦=
+ −

…

Note here that all the terms inside the square brackets are the products of
a sequence of numbers. If α is an integer, we can write this term as ()

()1
1 !
!

Mα
α
+ − ,

but in this case, we don't know whether α is an integer. So, we use
a generalized gamma function to represent such terms:

() () ()
()

1 . . . 1
M

M
α

α α α
α

Γ +
+ + − =

Γ

Chapter 5

[193]

Using this result in our earlier equation, we get the following equation:

[] [] []() ()
()

[]()
()

[]()
()

1 0

1 0

1 0
1 , 2 , ,

M M
P x x x M

M
α αα

α α α
Γ + Γ +Γ

= ⋅ ⋅
Γ + Γ Γ

…

We can have a generalized formula for multinomial distributions as well:

[] [] []() ()
()

()
()1

1 , 2 , ,
ik i

i i

M x
P x x x M

M
αα

α α=

⎡ ⎤Γ +Γ ⎣ ⎦= ⋅
Γ + Γ∏…

The Bayesian score for Bayesian
networks
In the preceding section, we discussed computing the Bayesian score in the case
of single random variables. In this section, we will generalize our discussion to
compute the Bayesian score for Bayesian networks. Again, we will take the case of
having two random variables, X and Y, and two possible network structures over
them. We will denote the structure with no edges between X and Y with 0G and the
X Y→ network with 1G .

For
0G , we have the following equation:

() () ()0 , 0 0| , | | , , | ,
X Y X Y X Y X YP D G P G P D G dθ θ θ θ θ θΘ Θ= ∫

Assuming that the parameters are independent, we have the following equation:

() () []()0 0 0| | | ,
X Y X X

m
P D G P G P x m G dθ θ θΘ

⎛ ⎞= ⋅⎜ ⎟
⎝ ⎠

∏∫

() []()0 0| | ,
Y Y Y Y

m
P G P y m G dθ θ θΘ

⎛ ⎞
⎜ ⎟
⎝ ⎠

∏∫

In the preceding equation, we can see that we have a marginal likelihood for each of
the variables, X and Y. Now, if both of these variables are multinomial and have a
Dirichlet prior, we can write each of these terms in the form of the equation that we
discussed in the preceding section.

Model Learning – Parameter Estimation in Bayesian Networks

[194]

Now, let's consider the case of 1G . Again, assuming parameter independence, we
can decompose the integral as follows:

() () []()1 1 1| | | ,
X X X X

m
P D G P G P x m G dθ θ θΘ

⎛ ⎞= ⋅⎜ ⎟
⎝ ⎠

∏∫

() []()
[]

0 0 00| 0
1 1| | |

:

| | ,
Y x Y x Y x Y x

m x m x

P G P y m G dθ θ θΘ
=

⎛ ⎞
⋅⎜ ⎟⎜ ⎟⎝ ⎠

∏∫

() []()
[]

0 1 11| 1
1 1| | |

:

| | ,
Y x Y x Y x Y x

m x m x

P G P y m G dθ θ θΘ
=

⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠

∏∫

Now, let's compare the marginal likelihood of both the cases. If we choose the
priors, ()0|XP GΘ and ()1|XP GΘ , to be the same in both cases, we can see that
the first terms in both cases are equal. Thus, given the assumption about the prior,
the difference in the marginal likelihood is due to the difference in the marginal
likelihood in all the observations over X, and all the observations over Y when
we split the observations based on the value of X. Therefore, if Y has a different
distribution in the split using observations of X, the latter term will have a better
marginal likelihood. If the distribution is same in both splits, the simpler model will
have a higher marginal likelihood. Thus, we can solve the problem that we faced in
the case of maximum likelihood scoring.

Let's take an example of a learning structure using pgmpy:

In [1]: import numpy as np
In [2]: import pandas as pd
In [3]: from pgmpy.models import BayesianModel
In [4]: from pgmpy.estimators import BayesianEstimator

Generating random data for two coin tossing examples
In [4]: raw_data = np.random.randint(low=0, high=2,
 size=(1000, 2))
In [5]: data = pd.DataFrame(raw_data, columns=['X', 'Y'])
In [6]: print(data)
Out[6]:
 X Y
0 0 1
1 1 0
2 1 1
3 1 1
4 1 1

Chapter 5

[195]

5 0 0
..
995 0 0
996 1 1
997 1 0
998 0 0
999 0 0

[1000 rows x 2 columns]
In [7]: coin_model = BayesianModel()
In [8]: coin_model.fit(data, estimator=BayesianEstimator)
In [9]: coin_model.get_cpds()
Out[9]:
[<TabularCPD representing P(X: 2) at 0x7f57bda018d0>,
 <TabularCPD representing P(Y: 2) at 0x7f57bda0124a>]

In [10]:coin_model.nodes()
Out[10]:['X', 'Y']

In [11]: coin_model.edges()
Out[11]: []

Let's take another example for the late-for-school model:

In [12]: raw_data = np.random.randint(low=0, high=2,

 size=(1000, 6)
In [12]: data = pd.DataFrame(raw_data, columns=['A', 'R', 'J',

 'G', 'L', 'Q'])

In [13]: student_model = BayesianModel()
In [14]: student_model.fit(data, esitmator=BayesianEstimator)

In [15]: student_model.get_cpds()
Out[15]:
[<TabularCPD representing P(A: 2) at 0x7a57e462d128>,
 <TabularCPD representing P(R: 2) at 0x7c57ad993048>,
 <TabularCPD representing P(J: 2) at 0x7f17cd991160>,
 <TabularCPD representing P(G: 2) at 0x7e67b129a278>,
 <TabularCPD representing P(L: 2) at 0x7e37e4695390>,
 <TabularCPD representing P(Q: 2) at 0x7f67a289d649>]

In [16]:student_model.get_nodes()
Out[16]:['A', 'R', 'J', 'G', 'L', 'Q']

In [17]:student_model.get_edges()
Out[17]:[]

As we had generated the data randomly, all the variables are independent.

Model Learning – Parameter Estimation in Bayesian Networks

[196]

Summary
In previous chapters, we considered that we know the structure of the network,
which is not true in most of real-life cases. In such cases, we need to learn the
structures from the data. In this chapter, we discussed the problem of learning
the parameters and structures using just data samples. Firstly, we discussed two
different techniques of parameter estimation, maximum likelihood estimation, and
Bayesian estimation. We saw that in cases when the data samples given to us don't
represent the underlying distribution, the Maximum Likelihood estimate fails to
generalize over new data points. Then, we discussed the problem of learning the
structure from the data using the same two techniques, that is, maximum likelihood
and Bayesian learning. We showed that in the case of structure learning as well,
maximum likelihood overfits the training data if we don't have enough samples.

In the next chapter, we will discuss the parameters and structures of Markov
networks using data samples.

[197]

Model Learning – Parameter

Estimation in
Markov Networks

In the preceding chapter, we learned about parameters and structures from the
data in the case of Bayesian networks. In this chapter, we will focus on learning
parameters and structures in the case of Markov networks. As it turns out, the
learning task in the case of Markov networks is more difficult. This is because of the
partition function that comes in the probability distribution. Because this partition
function depends on all factors, it doesn't let us decompose our optimization
functions into separate terms, as in the case of Bayesian networks. Therefore, we
have to use some iterative method over the optimization function to find the optimal
point in the parameter space.

In this chapter, we will discuss the following topics:

• Maximum likelihood parameter estimation
• Learning with approximate inference
• Structure learning

Maximum likelihood parameter
estimation
As in the case of Bayesian networks, we can also estimate the parameters in the case
of Markov networks using maximum likelihood. Let's see in detail how maximum
likelihood works in the case of Markov networks.

Model Learning – Parameter Estimation in Markov Networks

[198]

Likelihood function
Let's take a very simple example of the network, X — Y — Z. We have two
potentials, ()1 ,X Yφ and ()2 ,Y Zφ . We can now define the joint distribution over
this network as follows:

() () ()1 2
1, , . , . ,P X Y Z X Y Y Z
Z
φ φ=

Here, Z is the partition function and is defined as follows:

() ()1 2
, ,z

, . ,
x y

Z X Y Y Zφ φ= ∑

Therefore, the log-likelihood equation for a single instance <x, y, z> would be
as follows:

() () ()1 2ln , , ln , ln , lnP x y z x y y z Zφ φ= + −

Suppose we have a dataset D containing M samples, we can write the likelihood in
the following way:

() () [] []() [] []()1 2
1: , ,

m
P D x m y m y m z m

Z
θ φ φ

θ
= ⋅ ⋅∏

Thus, the log-likelihood equation translates to the following formula:

() [] []() [] []()()
[] () [] () ()

1 2

1 2
, ,

ln : ln , ln , ln

, ln , , ln , ln
m

x y y z

P D x m y m y m z m Z

M x y x y M y z y z M Z

θ φ φ

φ φ θ

= + −

= + −

∑
∑ ∑

As we have seen in the case of Bayesian networks, once we have sufficient
statistics that summarize the data (the joint count of the variables), we can learn
the parameter, θ . However, with Markov models, the problem is the third term
appearing in the earlier equation, that is, ()lnM Z θ :

() () ()1 1, ,Z x y y zθ φ φ= ⋅

Chapter 6

[199]

Thus, we get the following formula:

() () ()()1 2ln ln , ln ,M Z M x y y zθ φ φ= +

So, the term ln Z(ύ) couples both 1φ and 2φ . This poses a serious issue when we
want to estimate the parameters by maximizing the likelihood. If we change the
potential 1φ , it will change the value of 2φ due to the coupling introduced by Z(ύ).
So, unlike the Bayesian network, we cannot estimate the conditional probabilities
independent of each other.

However, this problem can be solved for this specific network by treating the
Markov model (X — Y — Z) as a Bayesian model X→Y→Z. Thus, learning the
parameters of this Bayesian model, which are P(X), P(Y│X), and P(Z│Y). Once
we have estimated these parameters, it can be converted again to the context of a
Markov model:

() () ()1 , |X Y P X P Y Xφ = ⋅

()2 |P Z Yφ =

However, the caveat for this method is that not all Markov models can be converted
into Bayesian models. For example, the diamond-shaped model represented in Fig
6.1 cannot be converted into a Bayesian model:

Fig 6.1: Diamond-shaped network that cannot be converted into a Bayesian model

Model Learning – Parameter Estimation in Markov Networks

[200]

Before we go into further discussion to learn the parameters for a Markov model,
let's discuss a particular representation of it called as the log-linear model.

Log-linear model
A feature, ()f D , is a function from a subset of variables ranging from D to . It
is similar to the factor with the non-negativity constraint. A special type of feature
is the indicator feature. An indicator feature is such that it is 1 for some values of

()y Valε D and 0 otherwise.

Suppose that φ is a factor over a subset of variables represented by D . The factor,
()φ D , can also be expressed as follows:

() ()()expφ = −D ε D

Here, ()Dε is called as the energy function. Thus, the energy function is simply
represented as follows:

() ()InD Dφ= −ε

Let's consider two random variables, X and Y, both of them have the cardinality,
m. Let's assume their distribution is such that they are more favorable to situations
when both of them have the same value. So, their energy function may be something
like this:

() 10
,

0
X Y

X Y
otherwise

=⎧ ⎫
= ⎨ ⎬
⎩ ⎭

ε

If we have a full factor representing the distribution, we need to have the 2m values.
This could be represented as a constant multiple (10) of the indicator feature for the
event X = Y. Thus, the energy function, ()i iD∈ , can be compactly represented as

()i i iw f⋅ D (in this particular case, iw is 10 and ()i if D is an identity feature).

Chapter 6

[201]

From our previous discussion, we know that the joint probability distribution
of random variables, 1 2, ,..., nX X X , encoded by a Markov model will be the
following formula:

() () ()

() ()

() ()

1 2
1

1

1

1, ,...,

1 exp

1 exp

k

n i i
i

k

i i
i

k

i i i
i

P X X X
Z

Z

w f
Z

φ
θ

θ

θ

=

=

=

=

⎡ ⎤= −⎢ ⎥⎣ ⎦
⎡ ⎤= − ⋅⎢ ⎥⎣ ⎦

∏

∑

∑

D

ε D

D

This type of representation of a Markov model is called a log-linear model. A
log-linear model is associated with a set of features, () () (){ }1 1 2 2, ,..., k kf f fD D D , and
weights, { }1 2, ,..., kw w w , where iD is a complete sub-graph of the model and is
expressed as follows:

() () ()1 2
1

1, ,..., exp
k

n i i i
i

P X X X w f
Z θ =

⎡ ⎤= − ⋅⎢ ⎥⎣ ⎦
∑ D

Let's go back to our previous discussion about estimating the parameters of
a Markov model by maximizing the likelihood. We can write the probability
distribution for ()1 2, ,..., :nP X X X θ , as follows:

() () ()1 2
1

1, ,..., : exp
k

n i i i
i

P X X X f
Z

θ
=

⎡ ⎤Θ = − ⋅⎢ ⎥Θ ⎣ ⎦
∑ D

So, the likelihood function for a dataset, D, containing M examples will be as follows:

() () ()()
10

1: exp
m k

i i i
ij

P D f j
Z

θ
==

⎡ ⎤Θ = − ⋅⎢ ⎥Θ ⎣ ⎦
∑∏ D

Model Learning – Parameter Estimation in Markov Networks

[202]

Thus, the log-likelihood equation will be as follows:

() ()() ()

()() ()

()() ()

1 1

1 1 1

1 1

ln : ln

ln

ln

m k

i i i
j i

m k m

i i i
j i j

k m

i i i
i j

P D f j Z

f j Z

f j M Z

θ

θ

θ

= =

= = =

= =

⎛ ⎞Θ = ⋅ − Θ⎜ ⎟
⎝ ⎠
⎛ ⎞= ⋅ − Θ⎜ ⎟
⎝ ⎠

⎛ ⎞
= ⋅ − Θ⎜ ⎟

⎝ ⎠

∑ ∑

∑ ∑ ∑

∑ ∑

D

D

D

Dividing both sides of the preceding equation by M, we get the following formula:

() ()() ()

() ()

1 1

1

1 1ln : ln

ln

k m

i i i
i j

k

i D i i
i

P D f j Z
M M

f Z

θ

θ

= =

=

⎛ ⎞
Θ = ⋅ − Θ⎜ ⎟

⎝ ⎠

= ⋅ − Θ⎡ ⎤⎣ ⎦

∑ ∑

∑

D

DE

Here, ()D i if⎡ ⎤⎣ ⎦E D is the empirical expectation of if , that is, its average over
the dataset.

Gradient ascent
In the preceding section, we saw that to estimate the parameters, we have to
maximize the earlier equation. As the equation is not in a closed form, we have to
use some iterative techniques to compute the maximum values. One of the simplest
iterative techniques is the gradient ascent. In this section, we will mainly focus on
gradient ascents and how to use them.

In this method, we will start with a random point on the curve and move upward
in the direction of the gradient. So, if ()tx is the point that we got in the previous
iteration, then ()1tx + would be as follows:

() () ()()1t t tx x f xη+ ← + ∇

This is repeated until we can't go any further, that is,
() ()1t tx x δ+ − < , where δ is the

convergence threshold. This is analogous to climbing up the hill. For example, let's
consider a simple equation, such as f(x) = sin x. We want to find the maxima of the
given function in the interval from 0 to π.

Chapter 6

[203]

Fig 6.2: Plot showing the steps taken in each step of the gradient ascent

In Fig 6.2, the green curve shows the steps taken in each iteration of the gradient
ascent. We can see that when we reach the maxima, the gradient approaches 0, thus
x, with each iteration, the value of x will keep decreasing, that is, () ()1t tx x δ+ − < .

The performance of the gradient ascent depends on the choice of η. If η is too large (as
shown in Fig 6.3), we will overshoot the maxima in each iteration. If η is too small (as
shown in Fig 6.4), we will require a lot of iterations to converge. In practice, the value
of η should be adaptive. It should start with the large of η and reduce in each iteration:

Fig 6.3: The n in this case is 2

Model Learning – Parameter Estimation in Markov Networks

[204]

In each iteration, we can see that the algorithm overshoots the maxima within 100
iterations, and that we are not able to converge with the maxima.

Fig 6.4: The n in this case is 0.01

The green curve shows the steps taken in each iteration. As the steps are very small,
it takes a lot of iterations to converge. In this case, it was 758.

In real life, we generally don't use the gradient ascent algorithms. Instead, we use
one variant of it called the conjugate gradient ascent. The conjugate gradient method
solves the issue of overshooting by adding a friction term, that is, each step depends
on the last two values of the gradient, and sharp turns are avoided.

In Python, this can be implemented as follows:

In [1]: import numpy as np
In [2]: from scipy import optimize

The methods implemented in scipy are meant to find the minima,
thus to find the maxima we have to negate the functions
In [3]: f_to_optimize = lambda x: -np.sin(x)
In [4]: optimize.fmin_cg(f_to_optimize, x0=[0])
Optimization terminated successfully.
 Current function value: -1.000000
 Iterations: 2
 Function evaluations: 15
 Gradient evaluations: 5
Out[5]: array([1.57079632])

Chapter 6

[205]

There are multiple methods that use second-order methods for faster convergence,
such as L-BGFS. The detailed descriptions of these algorithms are out of the scope of
this book.

Let's go back to our discussion on the estimation of the parameters for a Markov
model. In the previous section, we saw that the log-likelihood equation was as follows:

() () ()
1

1 : ln
k

i D i i
i

l D f Z
M

θ
=

Θ = ⋅ − Θ⎡ ⎤⎣ ⎦∑ DE

Here, ():l DΘ is the log-likelihood function and is defined as ()In :P DΘ . For any
gradient-based method, we need to have the gradient of the log-likelihood function
with respect to iθ . The gradient is computed as follows:

() () []1 : D i i i
i

l D f f
Mθ Θ

∂ Θ = −⎡ ⎤⎣ ⎦∂
DE E

As we know, at the maxima, the value of the derivate would be 0, thus at the maxima,
the value of () []D i i if fΘ=⎡ ⎤⎣ ⎦E ED (the expected value of each feature relative
to the distribution []ifΘE) matches its empirical expectation, ()D i if⎡ ⎤⎣ ⎦E D , in D.
We discussed earlier that to compute the value of Θ , we have to retort to an iterative
method. For the iterative method, we need to compute the gradient. From the
preceding equation, we know that the gradient is the difference between the empirical
expectation of the feature in the data (its empirical count) and its expected count
relative to the current parameterization. For example, let's consider a Markov model,
as given in Fig 6.5, between the two binary-valued random variables, A and B:

Fig 6.5: Markov model representing the dependencies among two
random variables, A and B, each of them being binary valued

Model Learning – Parameter Estimation in Markov Networks

[206]

Considering that the features used for the model are only indicator features, that is,
()

0 0,
,a bf a b , ()

1 0,
,a bf a b , ()

0 1,
,a bf a b , and ()

1 1,
,a bf a b , where ()

0 0,
,a bf a b is simply

() ()0 0I a a I b b= ⋅ = . ()0I a a= being the indicator function would be 1 if 0a a= ;
otherwise, it would be 0. Then,

0 0,D a bf⎡ ⎤
⎣ ⎦E will be the empirical frequency of

 0 0,a b in the dataset D, and 0 0,a bfΘ
⎡ ⎤
⎣ ⎦E will be the probability of getting

0 0,a b for a particular value of Θ, that is, []0 0,a bΘΕ . So, the gradient would be
the difference between the two numbers, as stated earlier.

However, this method poses a serious issue. To compute the gradient at each step,
we need to compute the value of []0 0,a bΘΕ . This requires the inference to be run
over the whole network. Thus, in each iteration of the gradient ascent step, we need
to run the inference over the complete network, which is computationally very
expensive and also intractable sometimes.

Now, let's see some code examples to learn parameters using pgmpy:

In [1]: import numpy as np
In [2]: import pandas as pd
In [3]: from pgmpy.models import MarkovModel
In [4]: from pgmpy.estimators import MaximumLikelihoodEstimator

Generating some random data
In [5]: raw_data = np.random.randint(low=0, high=2, size=(100, 2))
In [6]: raw_data
Out[6]:
array([[1, 1],
 [1, 1],
 [0, 1],
 ...,
 [0, 0],
 [0, 0],
 [0, 0]])
In [7]: data = pd.DataFrame(raw_data, columns=['A', 'B'])
In [8]: data
Out[8]:
 A B
0 1 1
1 1 1
2 0 1
3 1 0
..
996 1 1
997 0 0
998 0 0
999 0 0

Chapter 6

[207]

[1000 rows x 2 columns]

Markov Model as stated in Fig 6.5
In [9]: markov_model = MarkovModel([('A', 'B')])
In [10]: markov_model.fit(data,
 estimator=MaximumLikelihoodEstimator)
In [11]: factors = coin_model.get_factors()
In [12]: print(factors[0])
Out[12]:
╒═══════════════════════════════╕
│ A │ B │ phi(A,B) │
╞═══════════════════════════════╡
│ A_0 │ B_0 │ 0.1000 │
├───────────────────────────────┤
│ A_0 │ B_1 │ 0.2000 │
├───────────────────────────────┤
│ A_1 │ B_0 │ 0.4600 │
├───────────────────────────────┤
│ A_1 │ B_1 │ 0.2400 │
╘═══════════════════════════════╛

Learning with approximate inference
In the preceding section, we saw that to estimate parameters using the maximum
likelihood method, we need to run the inference algorithm in each step or iteration of
the learning method to compute []ifΘE . This is irrespective of the learning method
that we use. Running the exact inference over the whole network is computationally
expensive, and sometimes, intractable. For example, in the case of a grid network, the
exact inference algorithms are computationally intractable.

There are multiple ways to overcome this issue. One way is to treat the inference
algorithm as a black box independent of the learning algorithm. This approach has
its own advantages and disadvantages. It allows us to use approximate inference
algorithms instead of exact ones, which are computationally tractable. However, at
the same time, the inaccuracy in computing the gradient might lead to oscillations in
the learning algorithm, thus affecting its convergence.

Another way of solving this issue is to use the alternative approximate objective
functions whose optimization does not require the inference to be run over the
whole network. Unlike the previous method, which approximately optimized the
likelihood function, this method optimizes an approximated likelihood function
exactly. Although it may seem that both of these methods try to do the same thing,
one way or the other, the second approach is more useful, as it allows us to use
any applicable optimization algorithm and also allows us to bind the error in the
optimum values.

Model Learning – Parameter Estimation in Markov Networks

[208]

Belief propagation and pseudo-moment matching
One of the most popular inference algorithms is the belief propagation. One way
to use the belief propagation is to simply run it in each step of a gradient ascent
to compute the expected value of a feature with respect to the distribution. In the
previous chapters, we studied the family preservation property of the cluster graph.
Due to the family preservation property, we can say that each feature, if , will be a
subset of a cluster, iC , in the cluster graph. Thus, to compute the value of []ifΘE
, we can simply compute the belief propagation marginals of iC , and then compute
its expectation. However, this approach has some serious issues. In the case of grid
graphs, the belief propagation won't converge. Thus, the gradient computed using
the marginals will be oscillatory. So, any gradient-based optimization algorithm
won't converge.

One solution to this issue is to use the convergent version of the belief propagation.
For example, the belief propagation using approximate messages or using an
alternate objective function.

As we discussed in the preceding section, at convergence, () []D i i if fΘ=⎡ ⎤⎣ ⎦E ED ,
which is the expected value of each feature relative to the distribution,
([]ifΘE) matches its empirical expectation in D (()D i if⎡ ⎤⎣ ⎦E D). This can be
reformulated in the context of the belief propagation as follows:

() () []
iD i i ii Cf fβ=⎡ ⎤⎣ ⎦E ED

The distribution of the cluster graph is parameterized by the set of the
cluster potentials, (()i iCβ). Let's assume that for each cluster, iC , in the
cluster graph and for each assignment of j

iC in the cluster iC , we have an
indicator feature, ()jiI C (which is 1 when j

i iC c= ; otherwise, it will be 0). Thus, the
preceding equation, () () []

iD i i ii Cf fβ=⎡ ⎤⎣ ⎦E ED , translates to the following formula:

() ()j j
i i ic P cβ =

At the convergence of the gradient ascent algorithm, the belief of cluster
iC must be

the same as the empirical frequencies of the variables present in
iC in the data. This

formulation gives us a major advantage—if we already know the outcome of the
convergence, there is no need to run the algorithm.

Chapter 6

[209]

As the full table parameterization of a Markov model is redundant, we can have
multiple solutions that give rise to the same beliefs. One such solution could be
obtained by dividing the cluster potential of a particular cluster, iC (iβ) by the
sepset potential, ,i jµ . This can be described as follows:

,

i
i

i j

βφ
µ

←

This method can be summarized as follows:

1. For each cluster, iC , compute the cluster potential, iβ , as the empirical
frequencies of the variables present in the cluster from the data, that is,
() ()j j
i i ic P cβ = .

2. Run a single pass of a message passing algorithm to calibrate the graph.
Compute the sepset potential, ,i jµ , corresponding to a sepset, ,i jS , between
iC and jC .

3. Compute the final factors as
,

i
i

i j

βφ
µ

← .

Now, let's see some code examples for how to learn parameters using pgmpy:

In [1]: import numpy as np
In [2]: import pandas as pd
In [3]: from pgmpy.models import MarkovModel
In [4]: from pgmpy.estimators import PseudoMomentMatchingEstimator

Generating some random data
In [5]: raw_data = np.random.randint(low=0, high=2, size=(100, 4))
In [6]: raw_data
Out[6]:
array([[1, 1, 0, 0],
 [1, 1, 1, 0],
 [0, 1, 0, 1],
 ...,
 [0, 0, 0, 0],
 [0, 0, 0, 0],
 [0, 0, 1, 1]])
In [7]: data = pd.DataFrame(raw_data, columns=['A', 'B', 'C', 'D'])
In [8]: data
Out[8]:
 A B C D
0 1 1 0 0
1 1 1 1 0
2 0 1 0 1

Model Learning – Parameter Estimation in Markov Networks

[210]

3 1 0 0 0
..
996 1 1 0 1
997 0 0 0 0
998 0 0 0 0
999 0 0 1 1

[1000 rows x 4 columns]

Diamond shaped Markov Model as stated in Fig 6.1
In [9]: markov_model = MarkovModel([('A', 'B'), ('B', 'C'),
 ('C', 'D'), ('D', 'A')])
In [10]: markov_model.fit(data,
 estimator=PseudoMomentMatchingEstimator)
In [11]: factors = coin_model.get_factors()
In [12]: factors
Out[12]:
[<Factor representing phi(A:2, B:2) at 0x7f244d0f5e87>,
 <Factor representing phi(B:2, C:2) at 0x7f244d0f5e97>,
 <Factor representing phi(C:2, D:2) at 0x7f244d0f5f10>,
 <Factor representing phi(D:2, A:2) at 0x7f244d0f5f24>]

Structure learning
In the preceding chapter, we discussed structure learning in the case of Bayesian
models. In this section, we will focus on structure learning in the case of Markov
models. Similar to structure learning in the case of Bayesian models, here, we are
also going to focus on the two methods of structure learning. The first one being a
constraint-based approach, which tries to search for a graph structure, satisfying the
independence conditions observed from the data. The other approach is score-based
in which we define an objective function for a different model, and then search for a
high-scoring model.

Constraint-based structure learning
In the preceding chapter, we discussed the constraint-based structure learning in
the case of a Bayesian model. In Markov models, this approach seems to be more
advantageous as compared to the scoring-based approach. As the independence
conditions for Markov models are much simpler than those in Bayesian models
(which involve d-separation), the algorithms inferring the structure are much
simpler. The other major advantage is that the scoring-based structure learning uses
the likelihood function. From our previous discussion, we know that computing the
likelihood is computationally expensive in the case of Markov models, and in some
cases, it may be intractable as well.

Chapter 6

[211]

On the other hand, the constraint-based approaches have some disadvantages as
well. As we try to find dependence conditions among variables from the data, this
method is not robust to the noise present in the data. So, if we get a wrong result
from our dependence tests, our whole learning fails. Secondly, these methods only
learn the structure of the model, not the distribution. To obtain the distribution,
we must use the methods that we have for parameter estimation (which we had
discussed in the preceding section).

Before going into a detailed discussion about constraint-based learning, let's first
recapitulate the independencies of a Markov model:

• Local Markov independencies: This independence is of a variable, X, from
the rest of the variables in the model given its Markov blanket, that is,

{ } () ()()|X X MB X MB X⊥ − − H HX
• Pair-wise independencies: This independence is of each nonadjacent pair of

variables, X, Y, given all the other variables, { }()| ,X Y X Y⊥ −X
• Global independencies: This independence includes all the independencies

present due to the separation among the variables in the graph

Let's go back to our discussion on structure learning. Assume that we have a
distribution, *P , that can be represented by a Markov model, *H , so that *H
is a perfect map for *P . Our objective is to find *H by performing the earlier-
stated independence tests on *P . However, none of the independencies can be
checked tractably, as they all involve the entire set of variables, X . Apart from being
computationally intractable, this also poses some serious statistical issues. One of
them is that the independence assertions are evaluated on the empirical data and not
on the true distribution. Secondly, to estimate the distribution sufficiently well, we
need many data points exponentially.

To overcome this issue, we need to come up with an alternative set of independencies
that involves only small subsets of variables. For example, if in a network, *H , X,
and Y are not neighbors, they are separated by the Markov blankets, ()*MB XH and

()*MB YH . Thus, we can find a set, Z, such that () ()()* *min ,Z MB X MB X≤ H H . On
the other hand, if X and Y are neighbors in *H , we cannot find any such set, Z. Thus,
we can state the following equation:

()*if and only if , *& *| |X Y Z z d P X Y Z− ∃ ≤ = ⊥/εH

Model Learning – Parameter Estimation in Markov Networks

[212]

Here, *d is the maximum cardinality of any variable. Thus, we can

see that to determine whether X Y− is present in *H , we need to run
*

0

2d

k

n
k=

−⎛ ⎞
⎜ ⎟⎝ ⎠

∑
independence tests with tests involving only * 2d + variables. So, for
small values of *d , it is computationally tractable.

Although these algorithms work fairly in some cases, they have some very
fundamental limitations:

• The number of samples required to obtain correct results for all the
independent tests are too high.

• This algorithm assumes that there is a Markov model, *H present, which
is a perfect map of the distribution, *P . At the most, the cardinality of a
variable can only be *d . The violation of any of these assumptions will lead
to learning incorrect network structures.

Score-based structure learning
In the preceding chapter, we learned that in score-based structure learning, we define
a hypothesis space consisting of possible networks and an objective function, which
is required to score different networks, and then we construct a search algorithm that
attempts to find the network structure with the highest score in the hypothesis space.
In the case of Markov models, we will be following similar principles.

Let's first discuss the formulation of the hypothesis space. There are many ways
of formulating the hypothesis space, depending on the granularity at which they
consider network parameterization:

• The coarsest-grained hypothesis space being the space of different structures
of the Markov model.

• At the next level, we could consider the network parameterization to be the
size of the factors in the graph. In this case, the hypothesis space is a space
consisting different factor graphs.

• At the finest level of granularity, we can consider the hypothesis space to
be at the level of individual features in a log-linear model and measure the
sparcity at the level of the features included in the model.

Chapter 6

[213]

As the level of granularity of the hypothesis space increases, it allows us to select a
parameterization that matches the properties of the distribution of data without
over-fitting. For example, the hypothesis space at the granularity of a factor graph
allows us to distinguish between a single large factor over k variables and a set of 2

k⎛ ⎞
⎜ ⎟⎝ ⎠

pair-wise factors over the same variables (which require far less parameters).
However, at the same time, finer-grained spaces can obscure the connection to
network structures. For example, if we are dealing with the hypothesis space at the
level of individual features, the addition of a single feature, ()f d , into the model
will increase the complexity of the model by introducing edges between all the
variables present in d. This will create an issue while performing an inference in
the model.

In this section, we will focus on score-based structure learning, with the hypothesis
space being at the level of individual features. Considering our hypothesis space
to be Ω , our task is to select a log-linear model structure, M , which is defined
by a subset of features, []Φ ⊆ΩM . Assume that []Φ M is the set of parameters,
θ , that are compatible with the model structure. This can also be written as

[]0 only ifi ifθ ≠ Φε M . The structure and compatible parameterization define a
log-linear model distribution as follows:

() ()
[]

{ }

1| , exp

1 exp

i i
i

T

P f
Z

f
Z

θ θ ξ

θ

Φ

⎧ ⎫⎪ ⎪= ⋅⎨ ⎬
⎪ ⎪⎩ ⎭

=

∑
ε M

X M

Sometimes, in addition to the objective function, we also want to impose some
additional structural constraints. For example, we may want to bind the tree width
of the graph structure. These constraints help in rejecting very dense networks, thus
reducing the chances of over-fitting.

The likelihood score
Similar to the likelihood score discussed for Bayesian models, the likelihood score for
Markov models is defined as follows:

[]
()

()
max In | ,

ˆ, :

Lscore P D

l D

θ
θ

θ

Θ
=

=

ε M

M

M

M

Model Learning – Parameter Estimation in Markov Networks

[214]

Here, θ̂M are the maximum likelihood parameters compatible with M . Here, as
well, the likelihood score measures the fitness of the model to the data. Further, in
this case, the likelihood score tries to select a more complex model as it could capture
the noise in the data very well. So, in reality, the likelihood scores are used only with
very strict constraints on the structure of the model. For example, putting an upper
bound on the tree width of the graph structure.

Let's see an example of tossing two binary variable models using pgmpy:

In [1]: import numpy as np
In [2]: import pandas as pd
In [3]: from pgmpy.models import MarkovModel
In [4]: from pgmpy.estimators import MaximumLikelihoodEstimator

Generating random data
In [4]: raw_data = np.random.randint(low=0, high=2,
 size=(1000, 2))
In [5]: data = pd.DataFrame(raw_data, columns=['X', 'Y'])
In [6]: model = MarkovModel()
In [7]: model.fit(data, estimator=MaximumLikelihoodEstimator)

In [8]: model.get_factors()
Out[8]:
[<Factor representing phi(X:2, Y:2) at 0x7f244d0f5e87>]
In [9]: model.nodes()
Out[9]:
['X', 'Y']
In [10]:coin_model.edges()
Out[10]:
[('X', 'Y')]

Bayesian score
In the preceding chapter, we discussed the Bayesian score whose primary term is
a marginal likelihood that integrates the likelihood over all the possible network
parameterizations, that is, () ()| , |P D P dθ θ θ∫ M M . This avoided over fitting
by preventing overly optimistic or complex models from fitting into the training
data. However, unlike Bayesian models, in the case of Markov models, it is not as
easy to evaluate the likelihood. Thus, evaluating the marginal likelihood becomes a
challenge in this case.

Chapter 6

[215]

So, in this case, we use asymptotic approximation of the marginal likelihood:

() ()dimˆ, : ln
2BICscore l D Mθ= −M

M
M

Here, ()dim M is the dimension of the model and M is the number of instances of
the dataset, D. It measures the degree of freedom of our parameter space. When the
model has non-redundant features, ()dim M is exactly the number of features. Also,
when we have redundant features, it is less than the number of features.

Let's see an example of tossing two binary variable models using pgmpy:

In [1]: import numpy as np
In [2]: import pandas as pd
In [3]: from pgmpy.models import MarkovModel
In [4]: from pgmpy.estimators import BayesianEstimator

Generating random data
In [4]: raw_data = np.random.randint(low=0, high=2,
 size=(1000, 2))
In [5]: data = pd.DataFrame(raw_data, columns=['X', 'Y'])
In [6]: model = MarkovModel()
In [7]: model.fit(data, estimator=BayesianEstimator)

In [8]: model.get_factors()
Out[8]:
[<Factor representing phi(X:2, Y:2) at 0x7f244d0f5e87>]
In [9]: model.get_nodes()
Out[9]:
['X', 'Y']
In [10]:coin_model.get_edges()
Out[10]:
[('X', 'Y')]

Model Learning – Parameter Estimation in Markov Networks

[216]

Summary
In the previous chapters, we discussed learning the parameters, as well as the
structures, of a Bayesian model using just the data samples. In this chapter, we
discussed the same situations, but in the context of a Markov model. Firstly, we
discussed a very famous technique of parameter estimation, maximum likelihood
estimation. We saw that in Markov models, even the maximum likelihood estimate
in the case of a simple model could be computationally expensive, and in some
cases, it could also be intractable. This motivated us to find alternatives, such as
using approximate inference algorithms to compute the gradient or using a different
likelihood. We showed that learning with belief propagation can be reformulated as
optimizing inference and learning simultaneously. Then, we discussed the problem
of learning the structure from the data using the same two techniques, maximum
likelihood and Bayesian learning.

In the next chapter, we will discuss some of the most commonly used special
cases of the Bayesian and Markov networks, such as Naive Bayes and dynamic
Bayesian networks.

[217]

Specialized Models

In the previous chapters, we discussed the generic cases of models. Now we have
a good understanding of these models. In this chapter, we will discuss some of
the special cases of Bayesian and Markov networks that are extensively used in
real-life problems.

In this chapter, we will be discussing:

• The Naive Bayes model
• Dynamic Bayesian networks
• The Hidden Markov model

The Naive Bayes model
The Naive Bayes model is one of the most efficient and effective learning algorithms,
particularly in the field of text classification. Although over-simplistic, this model has
worked out quite well. In this section, we are going to discuss the following topics:

• What is a Naive Bayes model?
• Why does it even work?
• Types of Naive Bayes models

Specialized Models

[218]

Before discussing the Naive Bayes model, let's first discuss about the Bayesian
classifier. A Bayesian classifier is a probabilistic classifier that uses the Bayes theorem
to predict a class. Let c be a class and { }1 2, ,..., nX x x x= be a set of features. Then, the
probability of the features belonging to class c, that is ()|P c X , can be computed
using the Bayes theorem as follows:

() () ()
()

|
|

P c P X c
P c X

P X
⋅

=

So, for a given set of features, the output class can be predicted as follows:

()
() ()

()
() ()

ˆ argmax |

|
argmax

argmax |

c C

c C

c C

c P c X

P c P X c
P X

P c P X c

=

⋅
=

= ⋅

ε

ε

ε

Here, P(c) is the prior probability of the class c and ()|P X c is the likelihood
of X given c. If X were an univariate feature, then computing ()|P X c would
be ()1 |P x c , which is easier to compute. However, in the case of multivariate
features, ()|P X c is as follows:

() () ()1 1 1
2

| | | ,..., ,
n

i i
i

P X c P x c P x x x c−
=

= ∏

The Naive Bayes model simplifies the computation of ()|P X c by taking a strong
independence assumption over the features.

Fig 7.1: Graphical model representing the Naive Bayes model

Chapter 7

[219]

Fig 7.1 shows the graphical model corresponding to the naive assumption of a
strong independence among the features. It assumes that any features ix and jx are
conditionally independent of each other given their parent c (or []| , 1,i jx x c i j n⊥ ∀ ε).
Thus, ()|P X c can be stated as follows:

() ()
1

| |
n

i
i

P X c P x c
=

=∏

For example, let's say we want to classify whether a given ball is a tennis ball or a
football, and the variables given to us are the diameter of the ball, the color of the
ball, and the type of surface. Here, the color of the ball, the size, and surface type are
clearly independent variables and the type of ball depends on these three variables
giving a network structure, as shown in Fig 7.2:

Fig 7.2: Network structure for the ball classification example

Specialized Models

[220]

Why does it even work?
Although over-simplistic in assumption regarding dependence between the features,
the Naive Bayes algorithm has performed very well in some cases. Surprisingly, it
also performs very well in cases where there exists a strong dependence between the
features or attributes. In this section, we are going to unravel the mystery.

Let's start with a simple binary classification problem where we have to predict the
output class c based on the feature X. As it is a binary classification, there are only
two output classes. For the sake of simplicity, let's assume one class to be a positive
class, represented as c+ , and the other to be a negative class, represented as c− .
One simple explanation is that Naive Bayes owes its good performance to the
zero-one loss function that defines the error as the number of incorrect classifications.
Unlike other loss functions, such as squared error, the zero-one loss function does
not penalize the incorrectness in estimating the probability as long as the maximum
probability is assigned to the correct class. For example, for a given set of features
X, the actual posterior probability ()|P c X+ might be 0.8, and ()|P c X− might be
0.2, but due to the naive assumption regarding the dependencies between features,
Naive Bayes may predict ()|P c X+ as 0.6 and ()|P c X− as 0.4. Although the
probability estimations are incorrect, the class predicted is same in both of these
cases. Thus, Naive Bayes performed well in the case of strong dependencies between
features. However, the fundamental question has not yet been answered: why
couldn't the strong dependencies between features flip the classification?

Before discussing the details, let's introduce the formal definition of the equivalence
of two classifiers under the zero-one loss function. Two classifiers 1f and 2f are
said to be equal under the zero-one loss function, if for every X in the example space,
()1 0f X ≥ and ()2 0f X ≥ . This is denoted as 1 2f f= .

Let's assume the true graphical model TG (as shown in the Fig 7.3) represents the
dependencies between the features. The probability ()1 2, ,..., ,

T nP x x x cG can be stated
as follows:

() () ()()1 2
1

, ,..., , | ,
T T

n

n i i
i

P x x x c P c P x Pa x c
=

= ∏G G

Chapter 7

[221]

Here, ()
T iPa xG represents the parent of ix in TG , except for the class node c.

Fig 7.3: Graphical model representing strong dependencies between the features

To measure how strong the dependency between two features is, we have to
quantify it. Naturally, the ratio of conditional probability of a node given its
parents (()()| ,

Ti iP x Pa x cG) over the conditional probability of the node without
its parents ((),iP x c) reflects how strong the parent affects the node in each class.
This parameter is called a local dependence derivate and is represented as follows:

()() ()()
()
| ,

|
|,
T

T T

i i

i

P x Pa x c
dd x Pa x

P x c

+
+

+
= G

G G

()() ()()
()
| ,

|
|,
T

T T

i i

i

P x Pa x c
dd x Pa x

P x c

−
−

−
= G

G G

When x has no parents, ()()|
T T

dd x Pa x+
G G is defined as 1. When ()()| 1

T T
dd x Pa x+ ≥G G

, it means x's local dependency supports class c+ , else it supports the class c−
. Similarly, ()()| 1

T T
dd x Pa x− ≥G G

. This means x's local dependency supports class is
c− , else it supports class c+ . In the case where the local dependence derivate for
each class supports the other, it means they partially cancel each other out and the
final classification is the class with the maximum local dependence derivate. So, to
check which class supports the local dependencies, we can use the ratio of the local
dependence derivate of the two classes, represented as

T
ddrG :

()()
()()

|

|
T T

T

T T

dd x Pa x
ddr

dd x Pa x

+

−
= G G

G
G G

Specialized Models

[222]

If 1
T

ddr >G , then x's local dependency supports class 1
T

ddr <G . If c− , then x's local
dependency supports class 1

T
ddr =G . If , the local dependence distributes evenly in

both c+ and c− . Thus, the dependency does not affect the classification, however
strong it may be.

As stated earlier, for classification using the Bayesian classifier, we use
() ()ˆ argmax |

c C
c P c P X c

∈
= ⋅ . Thus, in cases of binary classification, we can define

a variable ()1 2, ,..., ,nf x x x c as the ratio of () ()|P c P X c+ +⋅ over () ()|P c P X c− −⋅ :

() () ()
() ()1 2

|
, , , ,

|n

P c P X c
f x x x c

P c P X c

+ +

− −

⋅
=

⋅
K

If ()1 2, , , , 1nf x x x c ≥K , then the example is classified as belonging to the class c+ , else
c− . Summarizing all the earlier formulations, ()1 2, , , ,

T nf x x x cKG can be stated
as follows:

() () ()()
() ()()
() ()() ()
() ()() ()

()
()

() ()

1
1 2

1

1

1
1

1 2
1

| ,
, , , ,

| ,

| , | |
|| , |

, , , ,

T

T

T

T

T

T N

n i
ii

n n i
ii

n i n
i i ii

n i
i ii ii

n

i B n
i

P c P x Pa x c
f x x x c

P c P x Pa x c

P c P x Pa x c P x c P x c
P x cP c P x Pa x c P x c

ddr x f x x x c

+ +
=

− −
=

+ + − +
=

−− − +
=

=

=

=

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= ⋅
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
⎡ ⎤= ⋅⎢ ⎥⎣ ⎦

∏
∏
∏ ∏∏

∏

K

K

G
G

G

G

G

G G

Here, ()1 2, , , ,
N B nf x x x cKG represents ()1 2, , , ,nf x x x cK in the case of the Naive

Bayes model. Thus, from the earlier equation, we can state that
N B T

f f=G G under

the zero-one loss function when 1
T
f ≥G and ()

1
T T

n

i
i
ddr x f

=

≤∏ G G , or 1
T
f <G and

()
1

T T

n

i
i
ddr x f

=

>∏ G G . Therefore, we can conclude that the distribution of dependencies

between the features over classes (that is ()
T iddr xG

) affect the classification, not
merely the dependencies.

Chapter 7

[223]

So, in cases where for each feature, ix , () 1
T iddr x =G , that is, the local distribution

of each feature is distributed evenly across both positive and negative classes, the
Naive Bayes model will perform in the same way as the model representing the
dependencies among the features. Further, in cases where ()

1
1

T

n

i
i
ddr x

=

=∏ G , that is, the
influence of some local dependencies in favor of class c+ is canceled by the influence
of some other dependencies in favor of class c− , Naive Bayes will be an optimal
classifier as well.

Because of its independence assumption, the parameters for each feature can be learned
separately, which greatly simplifies the learning process and is very useful in a domain
where we have very many features. In the case of document classification, the features
or the attributes of a document are nothing but the words comprising it. In most of the
cases, the vocabulary is huge, thus leading to a very large number of features. So, one of
the major algorithms used in document classification is Naive Bayes.

Types of Naive Bayes models
There are two variants of the Naive Bayes model that are generally used for
document classification.

One model specifies that a document is represented by a vector of binary attributes
indicating which words occur and which words do not occur in the document. The
attributes are independent of the number of times a word occurs in a document.
So, the computation of the probability of a document involves multiplication of the
probabilities of all the attribute values, including the probability of non-occurrence
for words that do not occur in the document. Here, we consider the document to be
the event, and the absence or presence of words to be attributes of the event. This
describes a distribution based on a multivariate Bernoulli event model.

The second model specifies that a document is represented by the set of word
occurrences in the document. In this model, however, the number of occurrences of
each word in the document is captured. So, computing the probability of a document
involves multiplication of the probability of the words that occur. Here we consider
the individual word occurrences to be the events and the document to be a collection
of word events. We call this a multinomial event model.

Specialized Models

[224]

Multivariate Bernoulli Naive Bayes model
As stated earlier, in the case of a multivariate Bernoulli Naive Bayes model,
a document is considered as a binary vector of the space of words for a given
vocabulary V. The document d can be represented as { }1 2, , , Vb b bK , where ib
corresponds to the presence of the word iw in the document; 1ib = if 0ib =
is present, itb otherwise. More often, tw is defined as an indicator variable
representing the presence of the word id in the document .

Thus, ()|i jP d c is defined as follows:

() ()() () ()()()
1

| | 1 1 |
V

i j it t j it t j
t

P d c b P w c b P w c
=

= ⋅ + + ⋅ −∏

We can see that a document is considered as a collection of multiple independent
Bernoulli experiments, one for each word in the vocabulary, with the probabilities
for each of these word events defined by each component ()|t jP w c .

The scikit-learn Python module provides us with the implementation of the
Naive Bayes model. Let's look at an example of text classification. Before going into
the details of classification, let's discuss one of the major steps in text classification
known as feature extraction.

The most common strategy to extract features from a text document is called a
bag-of-words representation. In this representation, documents are described by
word occurrences while completely ignoring the relative position information of the
words in the document. The scikit-learn Python module provides utilities for
the most common ways of extracting numerical features from text content, which
includes the following:

• Tokenizing strings and giving an integer ID for each possible token
• Counting the occurrences of tokens in each document
• Normalizing and weighting with diminishing importance of tokens that

occur in the majority of samples/documents

Let's discuss the various feature extraction methods implemented in scikit-learn
with examples. The first feature extractor we will discuss is CountVectorizer.
It implements both tokenization and counting occurrences:

In [1]: from sklearn.feature_extraction.text import CountVectorizer
The input parameter min_df is a threshold which is used to
ignore the terms that document frequency less than the
threshold. By default it is set as 1.

Chapter 7

[225]

In [2]: vectorizer = CountVectorizer(min_df=1)

In [3]: corpus = ['This is the first document.',
 'This is the second second document.',
 'And the third one.',
 'Is this the first document?']

fit_transform method basically Learn the vocabulary dictionary
and return term-document matrix.
In [4]: X = vectorizer.fit_transform(corpus)

Each term found by the analyzer during the fit is assigned a
unique integer index corresponding to a column in the resulting
matrix.
In [5]: print(vectorizer.get_feature_names())
 ['and', 'document', 'first', 'is', 'one', 'second', 'the',
 'third', 'this'])

The numerical features can be extracted by the method toarray
It returns a matrix in the form of (n_corpus, n_features)
The columns correspond to vectorizer.get_feature_names(). The
value of a[i, j] is basically the count of word correspond to
column j in document i.
In [6]: print(X.toarray())
array([[0, 1, 1, 1, 0, 0, 1, 0, 1],
 [0, 1, 0, 1, 0, 2, 1, 0, 1],
 [1, 0, 0, 0, 1, 0, 1, 1, 0],
 [0, 1, 1, 1, 0, 0, 1, 0, 1]]…)

Instead of using the count we can also get the binary value
matrix for the given corpus by setting the binary parameter
equals True.
In [7]: vectorizer_binary = CountVectorizer(min_df=1, binary=True)

In [8]: X_binary = vectorizer_binary.fit_transform(corpus)
The value of a[i, j] == 1 means that the word corresponding to
column j is present in document i
In [9]: print(X_binary.toarray())
 array([[0, 1, 1, 1, 0, 0, 1, 0, 1],
 [0, 1, 0, 1, 0, 1, 1, 0, 1],
 [1, 0, 0, 0, 1, 0, 1, 1, 0],
 [0, 1, 1, 1, 0, 0, 1, 0, 1]])

Specialized Models

[226]

Another interesting feature extractor is called tf-idf, which is short for term "frequency-
inverse document frequency". In a large text corpus, some words are present in
almost all the documents. These include "the", "a", and "is", hence carrying very little
meaningful information about the actual contents of the document. If we were to feed
the direct count data directly to a classifier, these very frequent terms would shadow
the frequencies of rarer yet more interesting terms. Tf-idf basically diminishes the
importance of these words that occur in the majority of documents. It is basically the
product of two terms, namely term frequency and inverse document frequency. Term
frequency corresponds to the frequency of a term in a document, that is, the number of
times the term t appears in the document d. Inverse document frequency is a measure
of how much information the word provides, that is, whether the term is common or
rare across all documents. Let's take an example for Tf-idf using scikit-learn:

In [1]: from sklearn.feature_extraction.text import TfidfVectorizer

In [2]: corpus = ['This is the first document.',
 'This is the second second document.',
 'And the third one.',
 'Is this the first document?']

The input parameter min_df is a threshold which is used to
ignore the terms that document frequency less than the
threshold. By default it is set as 1.
In [3]: vectorizer = TfidfVectorizer(min_df=1)

fit_transform method basically Learn the vocabulary dictionary
and return term-document matrix.
In [4]: X = vectorizer.fit_transform(corpus)

Each term found by the analyzer during the fit is assigned a
unique integer index corresponding to a column in the resulting
matrix.
In [5]: print(vectorizer.get_feature_names())
['and', 'document', 'first', 'is', 'one', 'second', 'the',
 'third', 'this'])

The numerical features can be extracted by the method toarray
It returns a matrix in the form of (n_corpus, n_features)
The columns correspond to vectorizer.get_feature_names(). The
value of a[i, j] is basically the count of word correspond to
column j in document i
In [6]: print(X.toarray())
[[0. 0.43877674 0.54197657 0.43877674 0. 0.
 0.35872874 0. 0.43877674]
[0. 0.27230147 0. 0.27230147 0.
0.85322574

Chapter 7

[227]

 0.22262429 0. 0.27230147]
[0.55280532 0. 0. 0. 0.55280532 0.
 0.28847675 0.55280532 0.]
[0. 0.43877674 0.54197657 0.43877674 0. 0.
 0.35872874 0. 0.43877674]]

There are other implementations of feature extractors in scikit-learn, such as
HashingVectorizer, which uses the hashing trick to create a mapping from the
string token name to the feature index. It turns a collection of text documents into a
scipy.sparse matrix holding token occurrence counts. As it uses the scipy.sparse
matrix, it is very memory efficient and can be used in the case of large text documents.

Let's come back to our discussion on the implementation of text classification using
the multivariate Bernoulli Naive Bayes model:

In [1]: from sklearn.datasets import fetch_20newsgroups
In [2]: from sklearn.feature_extraction.text import HashingVectorizer
In [3]: from sklearn.feature_extraction.text import CountVectorizer
In [4]: from sklearn.naive_bayes import BernoulliNB
In [5]: from sklearn import metrics

The dataset used in this example is the 20 newsgroups dataset.
The 20 Newsgroups data set is a collection of
approximately 20,000 newsgroup documents, partitioned (nearly)
evenly across 20 different newsgroups. It will be
automatically downloaded, then cached.

For our simple example we are only going to use 4 news group
In [6]: categories = ['alt.atheism',
 'talk.religion.misc',
 'comp.graphics',
 'sci.space']

Loading training data
In [7]: data_train = fetch_20newsgroups(subset='train',
 categories=categories,
 shuffle=True,
 random_state=42)

Loading test data
In [8]: data_test = fetch_20newsgroups(subset='test',
 categories=categories,
 shuffle=True,
 random_state=42)

Specialized Models

[228]

In [9]: y_train, y_test = data_train.target, data_test.target

It can be changed to "count" if we want to use count vectorizer
In [10]: feature_extractor_type = "hashed"

In [11]: if feature_extractor_type == "hashed":
 # To convert the text documents into numerical features,
 # we need to use a feature extractor. In this example we
 # are using HashingVectorizer as it would be memory
 # efficient in case of large datasets
 vectorizer = HashingVectorizer(stop_words='english')

 # In case of HashingVectorizer we don't need to fit
 # the data, just transform would work.
 X_train = vectorizer.transform(data_train.data)
 X_test = vectorizer.transform(data_test.data)

 elif feature_extractor_type == "count":
 # The other vectorizer we can use is CountVectorizer with
 # binary=True. But for CountVectorizer we need to fit
 # transform over both training and test data as it
 # requires the complete vocabulary to create the matrix
 vectorizer = CountVectorizer(stop_words='english',
 binary=True)

 # First fit the data
In [12]: vectorizer.fit(data_train.data + data_test.data)

Then transform it
In [13]: X_train = vectorizer.transform(data_train.data)
In [14]: X_test = vectorizer.transform(data_test.data)

alpha is additive (Laplace/Lidstone) smoothing parameter (0 for
no smoothing).
In [15]: clf = BernoulliNB(alpha=.01)

Training the classifier
In [16]: clf.fit(X_train, y_train)

Predicting results
In [17]: y_predicted = clf.predict(X_test)

In [18]: score = metrics.accuracy_score(y_test, y_predicted)
In [19]: print("accuracy: %0.3f" % score)

Chapter 7

[229]

Multinomial Naive Bayes model
In the previous section, we discussed the multivariate Bernoulli Naive Bayes model.
In this section, we are going to discuss another variant called the multinomial model.
Unlike the previous model, it captures the word frequency information of a document.

In the multinomial model, a document is considered to be an ordered sequence
of word events drawn from the same vocabulary V. Again, we make a similar
Naive Bayes assumption that the probability of each word event in a document
is independent of the word's context and position in the document. Thus, each
document id is drawn from a multinomial distribution of words with as many
independent trials as the length of

id . The distribution is parameterized by vectors
()1 2, , ,c c c c Vθ θ θ θ= … for all c Cε , where |V| is the size of the vocabulary and ciθ

represents the probability of the word iw belonging to the class c, that is ()|iP w c .

The parameter ciθ is estimated by a maximum likelihood estimate as follows:

ci
ci

c

N
N V α

θ α+=
+

Here,
ciN is defined as the number of times the word iw appeared in the sample

of class c in the training set
[]

ci di
d T c

N x= ∑
ε

, where dix represents the word count
of iw in the document d, T[c] represents all the samples of the training set T
belonging to the class c, and cN is defined as the total count of all features for
class c, that is

1

V

c ci
i

N N
=

=∑ .

The smoothing parameter α accounts for features not present in the learning
samples. It prevents the assignment of zero probabilities to words not present in
a particular class. Setting 1α = is called Laplace smoothing, while 1α < is called
Lidstone smoothing.

It's implementation in Python is as follows:

In [1]: from sklearn.datasets import fetch_20newsgroups
In [2]: from sklearn.feature_extraction.text import TfidfVectorizer
In [3]: from sklearn.feature_extraction.text import CountVectorizer
In [4]: from sklearn.naive_bayes import MultinomialNB
In [5]: from sklearn import metrics

Just like the previous example, here also we are going to deal
20 newsgroup data.

Specialized Models

[230]

In [6]: categories = ['alt.atheism',
 'talk.religion.misc',
 'comp.graphics',
 'sci.space']

Loading training data
In [7]: data_train = fetch_20newsgroups(subset='train',
 categories=categories,
 shuffle=True,
 random_state=42)

Loading test data
In [8]: data_test = fetch_20newsgroups(subset='test',
 categories=categories,
 shuffle=True,
 random_state=42)

In [9]: y_train, y_test = data_train.target, data_test.target
In [10]: feature_extractor_type = "tfidf"

In [11]: if feature_extractor_type == "count":
 # The other vectorizer we can use is CountVectorizer
 # But for CountVectorizer we need to fit transform over
 # both training and test data as it requires the complete
 # vocabulary to create the matrix
 vectorizer = CountVectorizer(stop_words='english')
 vectorizer.fit(data_train.data + data_test.data)
 X_train = vectorizer.transform(data_train.data)
 X_test = vectorizer.transform(data_test.data)

 elif feature_extractor_type == "tfidf":
 vectorizer = TfidfVectorizer(stop_words="english")
 X_train = vectorizer.fit_transform(data_train.data)
 X_test = vectorizer.transform(data_test.data)

alpha is additive (Laplace/Lidstone) smoothing parameter (0 for
no smoothing).
In [12]: clf = MultinomialNB(alpha=.01)

Training the classifier
In [13]: clf.fit(X_train, y_train)

Predicting results
In [14]: y_predicted = clf.predict(X_test)

In [15]: score = metrics.accuracy_score(y_test, y_predicted)
In [16]: print("accuracy: %0.3f" % score)

Chapter 7

[231]

Choosing the right model
In the previous sections, we discussed two different variants of Naive Bayes models,
the multivariate Bernoulli model and the multinomial model. There has been a lot
of research on which model to choose. McCallum and Nigam (1998) did extensive
comparisons of both the models (refer to the research paper titled A Comparison of
Event Models for Naive Bayes Text Classification). They found that the multivariate
Bernoulli model performs well with small vocabulary sizes, but the multinomial
Bernoulli model usually performs better at larger vocabulary sizes, providing on
average, a 27 percent reduction in error over the multivariate Bernoulli model at any
vocabulary size. However, it is advisable to evaluate both the models.

Dynamic Bayesian networks
In the examples we have seen so far, we have mainly focused on variable-based models.
In these types of models, we mainly focus on representing the variables of the model.
As in the case of our restaurant example, we can use the same network structure for
multiple restaurants as they share the same variables. The only difference in all these
networks would be the different states in the case of different restaurants. These
types of models are known as variable-based models.

Let's take a more complex example. Let's say we want to model the state of a robot
traveling over some trajectory. In this case, the state of the variables will change with
time, and also, the states of some variables at some instance t might depend on the
state of the robot at instance 1t − . Clearly, we can't model such a situation with a
variable-based model. So, generally, for such problems, we use dynamic Bayesian

networks (DBNs).

Assumptions
Before discussing the simplifying assumptions that DBNs make, let's first see the
notations that we are going to use in the case of DBNs. As DBNs are defined over a
range of time, with each time instance having the same variables, representing the
instantiation of a random variable iX at a time instance t, we will be using ()t

iX . The
variable

iX is now known as a template variable as it can't take any values itself.
This template variable is instantiated at various time instances, and at each instance
t, the variable ()t

iX can take values from ()iVal X . Also, for a set of random variables
χ⊆X , we use ()1 2:t tX , where 1 2t t< to denote the set of variables () []{ }1 2: ,t t t tX ε .

Similarly, we use the notation to denote the assignments to this set of variables.

Specialized Models

[232]

As we can see, the number of variables will be huge between any considerable
time difference and hence, our joint distribution over such trajectories will be very
complex. Therefore, we make some assumptions to simplify our distribution.

Discrete timeline assumption
The first simplifying assumption that we make is to have a discrete timeline rather
than having a continuous one. So, the measurement of the states of the random
variables are taken at some predetermined time interval ∆ . With this assumption
now, the random variable ()tX represents the values of the variables at a time
instance t ⋅∆ .

Using this assumption, we can now write the distribution over the variable over a
time period 0 to T as follows:

()() () ()()
1

0: 1 0:

0
|

T
T t t

t
P Pχ χ χ

−
+

=

=∏

Therefore, the distribution over trajectories is the product of conditional distribution
over the variables at each previous time instance, given all the past variables.

The Markov assumption
The second assumption that we make is as follows:

() ()() ()0: 11 |tt tχ χ χ−+ ⊥

Putting this in simple words, the variables at time t + 1 can directly depend only on
the variables at time t and are thus, independent of all the variables ()tχ ′ for 1t t′ < −
. Any system that satisfies this condition is known as Markovian. This assumption
reduces the earlier joint distribution equation to the following:

()() () ()()
1

0: 1

0
|

T
T t t

t
P Pχ χ χ

−
+

=

=∏

In other words, this assumption also constraints our network, such that the variables
in ()1tχ + can't have any edges from any other variable in ()0: 1tχ − .

Chapter 7

[233]

However, the problem with this assumption is that it may not hold in all cases.
Let's take an example to show this. Suppose we want to model the location of a
car. As we can see, we can easily predict the location of the car in the future, given
the observations about the past. Also, let's assume that we only have two random
variables {L,O} and L representing the location of the car and O representing the
observed location. Here, we might think that our model satisfies the Markov
assumption as the location at t + 1 will only depend on the location at time t and is
independent of the location at t′ for t t′ < . However, this intuition might turn out
to be wrong as we don't know the velocity or the direction of travel of the car. Had
we known the previous locations of the car, we could have easily estimated both
the direction and velocity. So, in such cases, to make our model closer to satisfying
our Markov assumption, we can add the variables direction and velocity in
our model. Now, at each instance of time, if we know the velocity and direction
of motion of the car, we can predict the next instance using just the values of the
previous instance. Now, to account for the changes in the velocity and direction,
we can also add variables such as weather conditions and road conditions. With the
addition of these extra variables, our model is now close to being Markovian.

Model representation
The Markov assumption and the independence assumption that we saw in the
previous section allow us to represent the joint distribution very compactly, even
over infinite trajectories. All we need to define is the distribution for the initial state
and a transition model ()|P χ χ′ . We can represent the preceding car example using
a network as shown in Fig 7.4, Fig 7.5, and Fig 7.6.

Fig 7.4: The 2-TBN network for the car example

Specialized Models

[234]

The following flowchart depicts the network structure at time t = 0:

Fig 7.5: The network structure

The following figure is the flowchart that shows the unrolled DBN over a
two-time slice:

Fig 7.6: Unrolled DBN over a two-time slice

Chapter 7

[235]

Also, we define the interface variables Iχ as variables whose values at time t have a
direct effect on the variables at time t + 1. Therefore, only the variables in Iχ can be
parents of the variables in χ′ . Also, the preceding car example is an example of a two-
time slice Bayesian network (2-TBN). We define a 2-TBN for a process over χ as a
conditional Bayesian network over χ′ , given Iχ , where Iχ χ⊆ is a set of interface
variables. In our example, all the variables are interface variables, except for O.

Overall, this 2-TBN represents the following conditional distribution:

() () ()
1

| | |
i

n

i X
i

P P I P X Paχ χ χ χ ′
=

′ ′ ′= =∏

For each template variable iX , the CPD ()|
ii XP X Pa ′′ is known as the template factor.

This template factor is instantiated multiple times in the network for each ()t
iX .

Currently, none of the Python libraries for PGM has a concrete implementation to
work with DBN. However, pgmpy developers are currently working on it so it should
soon be available in pgmpy.

The Hidden Markov model
In the previous section, we discussed DBNs. In this section, we will discuss one
particular variant of it, called the Hidden Markov model (HMM). Although named
the Hidden Markov model, it is not a Markov network. Its etymology comes from
the fact that the HMM satisfies the Markov property.

A Markov property basically indicates the memory-less property of a stochastic
process, and any stochastic process satisfying this property is called as a
Markov process. Let (){ }, 0X t t ≥ be a time-continuous process. Then, for
every 0n ≥ , time points 0 1 10 n nt t t t−≤ < < < <L with states 0 1, , ni i iL . Then,

() () ()() () ()()1 0 0 1| 1 , , | 1n n n n n n n nP X t i X t i X t i P X t i X t i− −= − = = = = − =L . This means
that the current state depends only on the previous state; any additional knowledge
about the history doesn't add any extra information.

Specialized Models

[236]

For example, if we sample the mood of a person once a minute, then it is fair to assume
that the current mood of the person is only affected by his/her mood in the previous
minute (unless that person is suffering from bipolar disorder). In the case of predicting
the trajectory of a missile, we can also assume that the position of the missile at 1tX +
can be determined by tX alone. Although at first glance, this may not seem to be
correct, if the trajectory is sampled very fast, it may be a very good approximation.

Fig 7.7: Graphical model representation of a Markov process

Fig 7.7 shows the graphical model representation of a Markov process. In most
applications of such models, the probability distribution ()1|t tP X X − is assumed to
be equal for any value of t. ()1|t tP X X − can be represented in the form of a transition
matrix (A) or a state-transition diagram. For example, if we want to model the mood
of a person (which can be very sad, sad, happy, or very happy), we can represent this
in the form of a state-transition diagram:

Fig 7.8: State-transition diagram representing the transition of the mood of a person across time

Chapter 7

[237]

The preceding figure shows the transition of the mood of a person from one state
to another. For example, from the diagram, we can infer that the probability of
transitioning from a very happy state to a happy state is 0.15, the probability of
remaining in the same state is 0.8, and so on. As all the edge weightings represent
the probability, all the weightings corresponding to the edges outgoing from a single
node should sum up to 1.

Another way of representing ()1|t tP X X − is with a transition matrix. A transition
matrix (A) is a matrix in the shape of N x N, where N represents the number of states.
Each element ija of a transition matrix A represents the probability of transitioning
from state is to state js . For example, the transition matrix corresponding to the
preceding state-transition diagram would be as follows:

Very Sad Sad Happy Very Happy

Very Sad 0.2 0.6 0.15 0.05
Sad 0.2 0.3 0.3 0.2
Happy 0.05 0.05 0.7 0.2
Very Happy 0.005 0.045 0.15 0.8

For the first node
0X , there is no parent node. So unlike all other nodes, its distribution

can't be encoded by the conditional probability distribution of the form ()1|t tP X X − .
So, for this node, the distribution is a marginal probability distribution called the initial
state probability distribution π . It is an array of shape of N x 1, with the constraint

1
1

N

i
i
π

=

=∑ . For example, in the earlier mood example, the matrix can be as follows:

Very Sad Sad Happy Very Happy

0.1 0.4 0.4 0.1

However, in real-life situations, we can't directly observe the state of the variable,
that is, the variables are hidden from us. For example, we can't observe whether a
person is very sad, sad, happy, or very happy just by looking at this table. Instead,
we can observe some other variable 1 2, , , tX X XL that is affected by tZ . For
example, the current activity of a person (which is an observable parameter) can tell
us about his/her mood. Thus, the graphical model representing the system, as stated
in Fig 7.7, is modified as follows:

Fig 7.9: Graphical model representing a Hidden Markov model

Specialized Models

[238]

With the addition of extra nodes and edges to the graphical model, we need
an additional conditional probability distribution ()|t tP Z X (called emission
probability), which is represented as Θ . It is assumed to be equal for any value of t.
Thus, an HMM model can be represented by the following three parameters:

• The initial state probability distribution (()0P X), represented as
(), ,λ π= Α Θ

• The transition matrix corresponds to the distribution ()1|t tP X X − and is
represented as A

• Emission probabilities corresponding to the distribution ()|t tP Z X and are
represented as Θ

Thus, an HMM model can be stated as (), ,λ π= Α Θ .

Generating an observation sequence
Given model (), ,λ π= Α Θ , we can generate a sequence of observations

{ }1 2, , , TZ Z ZZ = L as follows:

1. Choose an initial state 0 iX s= ({ }1, ,is N!ε) according to the initial state
distribution π .

2. Set t = 1.

3. Choose an observation tO corresponding to tX according to the emission
probability Θ .

4. Transit to the next state 1tX + according to the state-transition probability
represented by the transition matrix A.

5. Set t = t + 1 and return to step 3 if t < T, else terminate.

For HMM and its application in Python, we will use a library called hmmlearn. It is
an offshoot of a popular machine learning library in Python called scikit-learn.

Let's continue with the previous mood example. Suppose we are able to observe the
current activity of a person, and for the sake of simplicity, let's assume it is restricted
to a few possibilities such as watching television, sleeping, eating, crying, and
playing. As the observed value is also a discrete quantity, the emission probability
Θ can be represented in the form of a tabular conditional probability distribution.

Very Sad Sad Happy Very Happy

Watching Television 0.045 0.2 0.3 0.1
Sleeping 0.15 0.2 0.1 0.1

Chapter 7

[239]

Very Sad Sad Happy Very Happy

Eating 0.2 0.2 0.1 0.2
Crying 0.6 0.3 0.05 0.05
Playing 0.005 0.1 0.45 0.55

The preceding distribution represents the probability given the mood of the person.
For example, the first row and first column basically represent the probability of
someone watching television when he/she is very sad.

To represent an HMM with multinomial (or discrete) emission, The hmmlearn library
provides a class called MultinomialHMM. It's implementation in Python is as follows:

In [1]: from hmmlearn.hmm import MultinomialHMM
In [2]: import numpy as np

Here n_components correspond to number of states in the hidden
variables and n_symbols correspond to number of states in the
obversed variables
In [3]: model_multinomial = MultinomialHMM(n_components=4)

Transition probability as specified above
In [4]: transition_matrix = np.array([[0.2, 0.6, 0.15, 0.05],
 [0.2, 0.3, 0.3, 0.2],
 [0.05, 0.05, 0.7, 0.2],
 [0.005, 0.045, 0.15, 0.8]])
Setting the transition probability
In [5]: model_multinomial.transmat_ = transition_matrix

Initial state probability
In [6]: initial_state_prob = np.array([0.1, 0.4, 0.4, 0.1])

Setting initial state probability
In [7]: model_multinomial.startprob_ = initial_state_prob

Here the emission prob is required to be in the shape of
(n_components, n_symbols). So instead of directly feeding the
CPD we would using the transpose of it.
In [8]: emission_prob = np.array([[0.045, 0.15, 0.2, 0.6, 0.005],
 [0.2, 0.2, 0.2, 0.3, 0.1],
 [0.3, 0.1, 0.1, 0.05, 0.45],
 [0.1, 0.1, 0.2, 0.05, 0.55]])

Setting the emission probability

Specialized Models

[240]

In [9]: model_multinomial.emissionprob_ = emission_prob

model.sample returns both observations as well as hidden states
the first return argument being the observation and the second
being the hidden states
In [10]: Z, X = model_multinomial.sample(100)

The other type of HMM model that implements in hmmlearn is GaussianHMM. It
represents HMM with Gaussian emissions. Thus, for characterizing the emission
probability Θ , instead of using a complete tabular CPD, we can just provide the
mean and covariance. For example, let's try to sample observations from an HMM
with N = 3 and with a mean µ and covariance ∑ :

In [1]: from hmmlearn.hmm import GaussianHMM
In [2]: import matplotlib.pyplot as plt
In [3]: import numpy as np

Here n_components correspond to number of states in the hidden
variables.
In [4]: model_gaussian = GaussianHMM(n_components=3,
 covariance_type='full')

Transition probability as specified above
In [5]: transition_matrix = np.array([[0.2, 0.6, 0.2],
 [0.4, 0.3, 0.3],
 [0.05, 0.05, 0.9]])

Setting the transition probability
In [6]: model_gaussian.transmat_ = transition_matrix

Initial state probability
In [7]: initial_state_prob = np.array([0.1, 0.4, 0.5])

Setting initial state probability
In [8]: model_gaussian.startprob_ = initial_state_prob

As we want to have a 2-D gaussian distribution the mean has to
be in the shape of (n_components, 2)
In [9]: mean = np.array([[0.0, 0.0],
 [0.0, 10.0],
 [10.0, 0.0]])

Setting the mean
In [10]: model_gaussian.means_ = mean

Chapter 7

[241]

As emission probability is a 2-D gaussian distribution, thus
covariance matrix for each state would be a 2-D matrix, thus
overall the covariance matrix for all the states would be in the #
form of (n_components, 2, 2)
In [11]: covariance = 0.5 * np.tile(np.identity(2), (3, 1, 1))
In [12]: model_gaussian.covars_ = covariance

model.sample returns both observations as well as hidden states
the first return argument being the observation and the second
being the hidden states
In [13]: Z, X = model_gaussian.sample(100)

Plotting the observations
In [14]: plt.plot(Z[:, 0], Z[:, 1], "-o", label="observations",
 ms=6, mfc="orange", alpha=0.7)

Indicate the state numbers
In [15]: for i, m in enumerate(mean):
 plt.text(m[0], m[1], 'Component %i' % (i + 1),
 size=17, horizontalalignment='center',
 bbox=dict(alpha=.7, facecolor='w'))

In [16]: plt.legend(loc='best')
In [17]: plt.show()

Fig 7.10: Plot showing 100 samples drawn from the previously stated HMM.
The lines connect the successive observations.

Specialized Models

[242]

Fig 7.10 shows the successive observations drawn from the HMM stated earlier. In
this HMM, the initial state probability distribution favors the state 3s as compared
to the other two states. According to the transition matrix, the probability of
transitioning state 3s to 3s is much higher as compared to transitioning from 3s to
any other state. Thus, we can see that most of the observations correspond to the
state 3s as compared to any other state.

Computing the probability of an observation
The next problem that we are going to tackle in the case of the HMM is computing
the probability of observation given a model that is computing (), |P λZ X .

Let's start with a simple example of an HMM with a multinomial emission (that is, the
observation variable being discrete quantities). In this case, the emission probability Θ
can be represented by a matrix B such that each element ijb equals the following:

()| 1
1

ij t tb P Z j X i i N
j M

= = = ≤ ≤

≤ ≤

Here, N represents the number of possible states of a hidden variable and M
represents the number of possible states of an observed variable.

Suppose { }0 1 2, , , , TZ X X X X=X L is the sequence of states of the hidden variable.
To compute the value of (), |P λZ X , we can marginalize the distribution (), |P λZ X
with respect to X:

() ()

() ()()

| , |

, |

P P

P P

λ λ

λ λ

=

= ⋅

∑
∑
X

X

Z Z X

Z | X X

Let's first compute the term ()| ,P λZ X . The ()| ,P λZ X term is nothing but ()P Z | X ,
because given a model λ , tZ only depends on tX . The ()P Z | X term can be
computed as follows:

() ()

1 1 2 2

1
|

T T

T

i i
i

X Z X Z X Z

P P Z X

b b b
=

=

= ⋅

∏Z | X

L

Chapter 7

[243]

The ()P λX | term can be computed directly from the initial state probability
distribution and transition matrix as follows:

() () ()

0 0 1 2 1 1

0 1
1

|

T T

T

i i
i

X X X X X X X

P P X P X X

a a a

λ

π
−

−
=

=

= ⋅ ⋅

∏X |

L

Thus, ()|P λZ can be stated in the following way:

() () ()()

0 0 1 1 1 1
1 2

,
, , ,

, |

T T T
T

X X X X Z X X Z
X X X

P P P

a b a b

λ λ λ

π
−

= ⋅

= ⋅ ⋅

∑
∑

X
Z | Z | X X

L

L

The computation of ()|P λZ using the preceding equation requires an exponentially
large number of mathematical operations, precisely ()2 1 TT N− ⋅ multiplications and

1TN − additions. Even for a very small value of T (for example, 100) and N as 5,
it requires 1 722 100 5 00 10⋅ ⋅ ≈ operations. Thus, we require a more efficient way to
compute ()|P λZ . One such method is the forward-backward algorithm.

The forward-backward algorithm
Before going into the details of the algorithm, let's define some variables that are
needed for this routine, the first one being the forward variable ()i tα . It is defined
as follows:

() ()1 2, , , , |i t t it P Z Z Z X sα λ= =!

The forward variable is the probability of a partially observed sequence
{ }1 2, , , tZ Z ZL (until a time t) and the state is at time t, given the model λ . ()i tα ,
can be computed inductively as the following initialization:

() []1 1 1,i it b z i Nπα = ⋅ ∀ ε

Here, iπ represents the initial probability for the state is and 1ib z represents the
probability of 1Z given the state of 1 iX s= .

Specialized Models

[244]

The induction step:

() ()1 1
1

, 1

1

N

t t ij j t
i

j i a b z t T

j N

α α+ +
=

⎡ ⎤= ≤ <⎢ ⎥⎣ ⎦
≤ ≤

∑

Here, ija represents the probability of transitioning from the state is to the state js
and 1j tb z + represents the probability of 1tZ + given 1 jX s= .

The termination step:

() ()

()

1 2
1

1

| , , , , |
N

T T i
i
N

T
i

P P Z Z Z X s

i

λ λ

α

=

=

= =

=

∑

∑

Z !

The induction step is the core of the computational method.

Fig 7.11: Computation of ()1t jα + as shown in the induction step

Chapter 7

[245]

Fig 7.11 shows the computation algorithm used in the induction step. The values
of all the ()i tα instances are weight-summed, where the weightings represent the
probability of transitioning from the state is to the state js .

Fig 7.12: Implementation of the computation of ()1t jα + in terms of the lattice of observation t and states i

This operation only requires 2N T⋅ operations, as opposed to the 2 TT N⋅ operations
required by the direct calculation. So, in the case of N = 5 and T = 100, we only
require 3000 computations.

In a similar manner, we can use a backward pass to compute the backward variable
()t iβ . This is defined as follows:

() ()1 2, , , | ,t t t T t ii P Z Z Z X sβ λ+ += =L

The initialization step:

() []1 1,i T i Nβ = ∀ ε

The induction step:

() ()1 1
1

, 1, 2, ,1

1

N

i ij j t t
j

t a b z j t T T

j N

β β+ +
=

= = − −

≤ ≤

∑ L

Specialized Models

[246]

The hmmlearn module facilitates the computation of ()|P λZ . For example, let's take
the previously stated example of the GaussianHMM model:

mean of the emission probability distribution for various states
were:
[0.0, 0.0],
[0.0, 10.0],
[10.0, 0.0]

So if an observations are sampled from some other gaussian
distribution with mean centered at different location such as:
[5, 5]
[-5, 0]
the probability of these observations coming from this model
should be very low.

generating observations
In [18]: observations = np.row_stack((
 np.random.multivariate_normal(
 [5, 5], [[0.5, 0], [0, 0.5]], 10),
 np.random.multivariate_normal(
 [-5, 0], [[0.5, 0], [0, 0.5]], 10)))

model.score returns the log-probability of P(observations |
model)
In [19]: score_1 = model_gaussian.score(observations)
In [20]: print(score_1)
-728.50717880180241

Lets try to check whether observations sampled from the
multivariate normal distributions that were used in our HMM
model provides greater value of score or not
In [21]: observations = np.row_stack((
 np.random.multivariate_normal(
 [10, 0], [[0.5, 0], [0, 0.5]], 10),
 np.random.multivariate_normal(
 [0, 0], [[0.5, 0], [0, 0.5]], 2),
 np.random.multivariate_normal(
 [0, 10], [[0.5, 0], [0, 0.5]], 4)))
In [22]: score_2 = model_gaussian.score(observations)
In [23]: print(score_2)
-44.709532774805481

We can see that results matches our intuition

Chapter 7

[247]

Computing the state sequence
Apart from computing ()|P λZ , the other major challenges in the case of the HMM
(given an observation sequence { }1 2, , , TZ Z ZZ = L and a model λ) is computing the
state sequence { }1 2, , , TX X XX = L that best explains the model. A single best-state
sequence is defined as the state sequence X that maximizes (),P λX | Z , which is
equivalent to maximizing (),P λX | Z .

The Viterbi algorithm is a dynamic programming-based algorithm used to compute
the best-state sequence. Before going into the details of the algorithm, let's define a
quantity ()t iδ as the best score along a single-state sequence at time t, which accounts
for the first t observations and ends in the state is . This can be defined as follows:

() ()
1 2 1

1 2 1 1, ,
max , , , , , Z , , Z |

t
t t t i tX X X
i P X X X X sδ λ

−
−= =

L
L L

By the induction, we have the following:

() ()
11 max

tt t ij j Zi
i i a bδ δ

++
⎡ ⎤= ⋅⎣ ⎦

To actually retrieve a state sequence, we need to keep track of the argument that
is maximized for each t and j using the array ()t jυ/ . The complete procedure is
as follows:

The initialization step:

() []
()

11

1

. 1,

0
i iZi b i N

i

δ π

υ

= ∀

=/

ε

The recursion step:

()
[]

()11,
max 2

1
tt t ij j Zi N

j i a b t T

j N

δ δ −⎡ ⎤= ⋅ ⋅ ≤ ≤⎣ ⎦

≤ ≤
ε

()
[]

()11,
argmax 2

1

t t iji N
j i a t T

j N

υ δ −⎡ ⎤= ⋅ ≤ ≤/ ⎣ ⎦

≤ ≤
ε

Specialized Models

[248]

The termination step:

[]
()*

1,
max Ti N

p iδ=
ε

[]
()*

1,
arg maxT Ti N

q iδ=
ε

The state sequence backtracking step:

()* *
1 1 , 1, 2, ,1t t tq q t T Tυ + += = − −/ !

This method is similar to what we discussed in the case of forward calculations,
except for a few minor changes such as the inclusion of a backtracking step and
maximization over previous states instead of summation.

The hmmlearn module also facilitates the computation of a state sequence. For
example, using the previously defined HMM model with a multinomial emission:

creating a set of random observations
As the observations can be one of the 5 states that is [0, 4],
we can create them using np.random.randint
In [24]: random_walk = np.random.randint(low=0, high=5, size=50)

the array should be in the form of (n_observations, n_features)
reshaping the array
In [25]: random_walk = random_walk[:, np.newaxis]

model.decode finds the most likely state sequence corresponding
to the observation. By default it uses Viterbi algorithm
it returns 2 parameters, the first one being log probability of
the maximum likelihood path through the HMM and second being the
state sequence.
In [26]: logprob, state_sequence = model_multinomial.decode(
 random_walk)

Chapter 7

[249]

The next major problem in HMM is to compute the model parameters given the
observations. The details of the algorithm are beyond the scope of this book, but we
will provide an example of its implementation using hmmlearn.

To train an HMM or to compute its model parameters,
hmmlearn has a fit method in all the HMM classes. The
input is a list of the sequence of the observed value. As
the expectation-maximization (EM) algorithm, which is
used to compute the model parameters, is a gradient-based
optimization method, it will generally get stuck in a local
optima. One workaround is to try the fit method with
various initializations and select the highest scoring model.

In [1]: from __future__ import print_function

In [2]: import datetime
In [3]: import numpy as np
In [4]: import matplotlib.pyplot as plt
In [5]: from matplotlib.finance import quotes_historical_yahoo
In [6]: from matplotlib.dates import YearLocator, MonthLocator,
DateFormatter
In [7]: from hmmlearn.hmm import GaussianHMM

Downloading the data
In [8]: date1 = datetime.date(1995, 1, 1) # start date
In [9]: date2 = datetime.date(2012, 1, 6) # end date

get quotes from yahoo finance
In [10]: quotes = quotes_historical_yahoo("INTC", date1, date2)

unpack quotes
In [11]: dates = np.array([q[0] for q in quotes], dtype=int)
In [12]: close_v = np.array([q[2] for q in quotes])
In [13]: volume = np.array([q[5] for q in quotes])[1:]

take diff of close value
this makes len(diff) = len(close_t) - 1
therefore, others quantity also need to be shifted
In [14]: diff = close_v[1:] - close_v[:-1]
In [15]: dates = dates[1:]
In [16]: close_v = close_v[1:]

pack diff and volume for training

Specialized Models

[250]

In [17]: X = np.column_stack([diff, volume])

Run Gaussian HMM
In [18]: n_components = 5

make an HMM instance and execute fit
In [19]: model = GaussianHMM(n_components, covariance_type="diag",
 n_iter=1000)

In [20]: model.fit([X])

predict the optimal sequence of internal hidden state
In [21]: hidden_states = model.predict(X)

print trained parameters and plot
In [22]: print("Transition matrix")
In [23]: print(model.transmat_)

In [24]: for i in range(n_components):
 print("%dth hidden state" % i)
 print("mean = ", model.means_[i])
 print("var = ", np.diag(model.covars_[i]))

In [25]: years = YearLocator() # every year
In [26]: months = MonthLocator() # every month
In [27]: yearsFmt = DateFormatter('%Y')
In [28]: fig = plt.figure()
In [29]: ax = fig.add_subplot(111)

In [30]: for i in range(n_components):
 # use fancy indexing to plot data in each state
 idx = (hidden_states == i)
 ax.plot_date(dates[idx], close_v[idx], 'o',
 label="%dth hidden state" % i)
 ax.legend()

format the ticks
In [31]: ax.xaxis.set_major_locator(years)
In [32]: ax.xaxis.set_major_formatter(yearsFmt)
In [33]: ax.xaxis.set_minor_locator(months)
In [34]: ax.autoscale_view()

format the coords message box
In [35]: ax.fmt_xdata = DateFormatter('%Y-%m-%d')

Chapter 7

[251]

In [36]: ax.fmt_ydata = lambda x: '$%1.2f' % x
In [37]: ax.grid(True)
In [38]: ax.set_xlabel('Year')
In [39]: ax.set_ylabel('Closing Volume')

In [40]: fig.autofmt_xdate()
In [41]: plt.show()

Fig 7.13: Plot showing the closing volume for each of the hidden states across time.
It is the output of the previously stated code.

Applications
One of the major applications of the HMM is in the field of speech recognition. In
this section, we will briefly describe the process of speech recognition.

In speech recognition, our job is to compute the most probable word corresponding
to a speech signal or acoustic observation. Our aim is to compute the following:

()
() ()

()
() ()

ˆ argmax |

|
argmax

argmax |

W

W

W

W P W O

P O W P W
P O

P O W P W

=

⋅
=

= ⋅

W

W

W

ε

ε

ε

Specialized Models

[252]

Here, O corresponds to the acoustic observation and W is the set of all possible
words. The likelihood ()|P O W is determined by an acoustic model, and the prior
P(W) is determined by a language model.

Fig 7.14 shows the architecture of an HMM-based speech recognition system. There
are three major components:

• Acoustic model
• Language model
• Pronunciation dictionary

Fig 7.14: Architecture of an HMM-based speech recognition system

The acoustic model
The basic units of sound represented by the acoustic model are the phonetics. For
example, the word "bat" is composed of three phonetics, /b/ /ae/ /t/. About 40
such phonetics are required for English. Each spoken letter W can be decomposed
into a sequence of WK base phonetics. This sequence is called its pronunciation.
Thus, a word can be represented by an HMM, with hidden state variables being the
base phonetics. For example, the HMM for the word bat is as follows:

Chapter 7

[253]

Fig 7.15: An HMM corresponding to the word "bat"

So, with the proper definition of the transition matrix A, the initial state probability
distribution π , and the emission probability Θ , we can compute the value of
()|P O W using the forward algorithm, as discussed in the previous sections.

The language model
The language model provides context to distinguish between words and phrases that
sound similar. For example, the phrases "recognize speech" and "wreck a nice beach"
may be pronounced the same but mean very different things. These ambiguities are
easier to resolve when evidence from the language model is incorporated with the
pronunciation dictionary and the acoustic model. Further, they also help in faster
speech recognition by restricting the search space to the most probable words rather
than all possible words. Generally, the N-gram language model is used in most
speech recognition applications, where the prior probability of a word sequence

{ }1 2, , , KW W W=W L is computed as follows:

() ()1 2 1
1

| , , ,
K

i i i i N
i

P P W W W W− − − +
=

=∏W L

Specialized Models

[254]

Thus, to build speech recognition, we must perform the following steps:

1. For each word υ in the vocabulary, we must build an HMM υλ by
estimating model parameters that optimize the likelihood of the training set
acoustic observation for the thυ word.

2. Build a language model corresponding to the vocabulary.
3. For each acoustic observation { }1 2, , , TO O O=O L , we must compute the

value of ()|P υλO and select the value of v that maximizes () ()|P Pυλ υ⋅O .

Summary
In this chapter, we discussed special cases in graphical models that are widely used
in the real world. We discussed the Naive Bayes model, which is a very simple
model but is widely used in text classification and is known to give very good
results. Then, we talked about DBNs, which are generally used in cases where we
want to model some problem in which the values of the variables change with time.
We discussed the Hidden Markov model, which is a very simple case of the DBN
and is widely used in the field of speech recognition.

[255]

Index

Symbol
0/1 error 162

A
approximate inference

about 207
belief propagation 208, 209
pseudo-moment matching 208, 209

approximate messages

about 117-120
computing 120-122
inference 123

assumptions, dynamic Bayesian

networks (DBNs)

discrete timeline assumption 232
Markov assumption 232, 233

B
Bayesian classifier 218

Bayesian models

about 13, 14
converting, into Markov models 47-49
D-separation 22
factorization, of distribution

over network 16, 17
Markov models, converting into 51, 52
representation 14, 15

Bayesian networks

and Markov network 47
implementing, pgmpy used 17
importance sampling 145, 146
pattern, reasoning 20, 21
representation 18-20
structure learning 183, 184

Bayesian parameter estimation

about 175-177
for Bayesian networks 179-181
local decomposition 183
priors 177, 178

Bayesian score

for Bayesian networks 193, 194
for Markov models 214

belief propagation

about 72, 208, 209
clique tree 72, 73
message passing 76-80
using, for MAP 95, 96
versus variable elimination 100, 101
with approximate messages 117-120

belief update propagation

about 132, 133
MAP inference 133-137

Bethe cluster graph 116

C
causal reasoning 21

chordal graphs 53-55

classification error 162

clique tree

about 72
calibration 80-82
constructing 73-76
defining 73

cluster graph belief propagation 112-114

cluster graphs

Bethe cluster graph 116
constructing 115
constructing, with pairwise Markov

networks 115, 116

[256]

collapsed importance sampling 155-157

collapsed particles 138, 154

conditional independence 3, 4

conditional probability

distribution. See CPD

constrained satisfaction problem (CSP) 137

constraint-based structure learning

about 184-186
in Markov models 210-212
limitations 212
structure score learning 187

context-specific CPDs
about 28
Rule CPD 30
Tree CPD 28, 29

CPD

about 8, 9, 14, 31, 141
context-specific CPDs 28
deterministic CPDs 26, 27
representations 26
representing, pgmpy used 9, 10

D
decoding 134

deterministic CPDs 26, 27

Directed Acyclic Graph (DAG) 14

directed graphical model 1

discriminative learning

about 165
versus generative training 165

distributions

and graphs, relating 24
graphs, constructing from 46

D-separation

about 22, 45
direct connection 22
indirect connection 22-24

dynamic Bayesian networks (DBNs)

about 231
assumptions 231, 232
model representation 233-235

E
edges 11, 12

energy function

about 106
energy term 107
entropy term 107

exact inference

problem solving 107-110
expectation-maximization (EM)

algorithm 249

expected log-likelihood 161

F
factor 33

factor division

about 83
implementing 84-87

factor graph 42, 43

factor maximization

about 91
example 92

Flat Tyre (F) 28

forward-backward algorithm 243-246

forward sampling 139, 140

full particles 138

G
generative learning

about 165
versus discriminative training 165

Gibbs distribution

and Markov network 38-41
Gibbs sampling

about 148, 149
Markov chain 149-152

gradient ascent 202-206

graphical model

about 1
directed graphical model 1
undirected graphical model 1

graphs

and distributions, relating 24
constructing, from distributions 46
IMAP 24, 25
IMAP, to factorization 25

[257]

graph theory

about 11
cycles 13
edges 11, 12
nodes 11, 12
paths 12, 13
trails 13
walk 12, 13

H
Hamming loss 163

Hidden Markov model (HMM)

about 235-238
applications 251
forward-backward algorithm 243-246
HMM-based speech recognition system 252
observation sequence, generating 238-242
probability of observation,

computing 242, 243
state sequence, computing 247-249

HMM-based speech recognition system

about 252
acoustic model 252, 253
language model 253, 254

I
IMAP

about 24, 25
to factorization 25

importance sampling

about 141-145
in Bayesian networks 145, 146
marginal probabilities, computing 147
normalized likelihood weighting 147
ratio likelihood weighting 147

independence

about 3, 4
representing, pgmpy used 6, 7

independently and identically distributed

(IID) 159

induced graphs

induced width 70
tree width 70
width 70

inference

about 57
belief update propagation 132, 133
complexity 59
example 58, 59
sum-product expectation

propagation 123-132
with approximate messages 123

IPython

installing 5
URL 5

J
joint probability distribution

about 3
representing, pgmpy used 7, 8

junction tree. See clique tree

L
Lagrangian multipliers

using 108
Lauritzen-Spiegelhalter algorithm 87

learning task

about 165
data observability 166
density estimation 160-162
empirical risk 164
general ideas 160
goals 160
knowledge discovery 163
model constraints 165
optimization problem 163
overfitting 164
specific probability values,

predicting 162, 163
Lidstone smoothing 229

likelihood function

about 198, 199
gradient ascent 202-206
log-linear model 200, 201

likelihood score

for Markov models 213
likelihood weighting 141, 142

log-linear model 200, 201

[258]

M
MAP

belief propagation, using 95, 96
variable elimination, using 90, 91

MAP inference 89, 90, 133-137

marginal probabilities

computing 147
Markov blanket 45

Markov chain

distributions converge, checking 152
Gibbs sampling 149-152
using 152-154

Markov chain Monte Carlo methods 148

Markovian 232

Markov models

Bayesian models, converting into 47-49
constraint-based structure learning 210
converting, into Bayesian models 51, 52
likelihood score 214
maximum likelihood parameter

estimation 197
score-based structure learning 212, 213
structure learning 210

Markov models, independencies

global independencies 211
local Markov independencies 211
pair-wise independencies 211

Markov network

about 32, 33
and Bayesian networks 47
and Gibbs distribution 38-41
factor operations 35-37
independencies 44-46
maximum likelihood parameter

estimation 197
parameterizing 33-35

Markov process 235

maximization 91

maximum likelihood parameter estimation

in Markov networks 197
learning, with approximate inference 207
likelihood function 198, 199
score-based structure learning 212, 213
structure learning 210

message passing

about 76-80
implementing, with factor division 83-87
variables from different clusters,

querying 88, 89
with division 82

moral graph 49

moralization, of network 49

most probable assignment

example 96
searching 96

multinomial Naive Bayes model 229

multiple transitioning model 152

multivariate Bernoulli Naive Bayes model

about 224-227
implementation 227

mutilated network proposal

distribution 145

N
Naive Bayes model

about 217-219
best model, selecting 231
multinomial Naive Bayes model 229
multivariate Bernoulli Naive

Bayes model 224-227
types 223
usage 220-223

nodes 11, 12

normalized importance sampling

estimator 145

normalized likelihood weighting 147

O
optimization problem 104, 105

P
pairwise independency 45

pairwise Markov networks

cluster graphs, constructing 115, 116
parameter learning

about 166
maximum likelihood estimation 166-169

[259]

maximum likelihood estimation, for
Bayesian networks 171-174

maximum likelihood principle 169, 170
particle 138

particle-based methods 138

Perfect Map 25

pgmpy

installing 5
URL 6
used, for implementing Bayesian

networks 17
used, for implementing CPD 9, 10
used, for predicting variable states

from model 97-100
used, for representing independence 6, 7
used, for representing joint probability

distribution 7, 8
probability theory

about 2
conditional independence 3, 4
independence 3, 4
random variable 2, 3

propagation-based approximation algorithm

about 110
cluster graph belief propagation 112-114
cluster graphs, constructing 115
example 111, 112

pseudo max-marginals 134

pseudo-moment matching 208, 209

R
random variable 2, 3

Rao-Blackwellized particles 154

ratio likelihood weighting 147

relative entropy 104

Rule CPD 30

S
sampling-based approximate

methods 138, 139

score-based structure learning

about 185
Bayesian score 214
in Markov models 212, 213
likelihood score 213

structure learning

about 183
constraint-based structure learning 210-212
in Bayesian networks 183, 184
in Markov models 210
methods 184

structure learning, methods

Bayesian model averaging 185
constraint-based structure learning 184
score-based structure learning 185

structure score learning

about 187
Bayesian score 190-193
likelihood score 187-190

sum-product expectation

propagation 123, 125, 131, 132

T
target distribution 143

tf-idf 226

tools

IPython, installing 5
pgmpy, installing 5

Tree CPD 28, 29

triangulation 53

two-time slice Bayesian network

(2-TBN) 235

U
undirected graphical model 1

unnormalized importance sampling

estimator 144

V
variable elimination

about 60, 62
analyzing 66-69
elimination order, searching 69, 70
example 64, 65
using, for MAP 90, 91
versus belief propagation 100, 101

variable elimination order

cost criteria 71
searching 69, 70
searching, chordal graph property used 71

[260]

variable elimination order, cost criteria

min-fill 71
min-neighbors 71
min-weight 71
weighted-min-fill 71

variables connection

common cause 23
indirect causal effect 23
indirect evidential effect 23

vertices 12

W
weighted importance sampling

estimator 145

Thank you for buying
Mastering Probabilistic Graphical

Models Using Python

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Building Probabilistic Graphical
Models with Python
ISBN: 978-1-78328-900-4 Paperback: 172 pages

Solve machine learning problems using probabilistic
graphical models implemented in Python with
real-world applications

1. Stretch the limits of machine learning by learning
how graphical models provide an insight on
particular problems, especially in high dimension
areas such as image processing and NLP.

2. Solve real-world problems using Python libraries
to run inferences using graphical models.

3. A practical, step-by-step guide that introduces
readers to representation, inference, and learning
using Python libraries best suited to each task.

Expert Python Programming
ISBN: 978-1-84719-494-7 Paperback: 372 pages

Best practices for designing, coding, and distributing
your Python software

1. Learn Python development best practices from
an expert, with detailed coverage of naming
and coding conventions.

2. Apply object-oriented principles, design
patterns, and advanced syntax tricks.

3. Manage your code with distributed
version control.

Please check www.PacktPub.com for information on our titles

Building Machine Learning
Systems with Python
ISBN: 978-1-78216-140-0 Paperback: 290 pages

Master the art of machine learning with Python and
build effective machine learning systems with this
intensive hands-on guide

1. Learn how to create machine learning
algorithms using the flexibility of Python.

2. Get to grips with scikit-learn and other Python
scientific libraries that support machine
learning projects.

3. Employ computer vision using mahotas for
image processing that will help you uncover
patterns and trends in your data.

wxPython 2.8 Application
Development Cookbook
ISBN: 978-1-84951-178-0 Paperback: 308 pages

Quickly create robust, reliable, and reusable
wxPython applications

1. Develop flexible applications in wxPython.

2. Create interface translatable applications that
will run on Windows, Macintosh OSX, Linux,
and other Unix-like environments.

3. Learn basic and advanced user interface controls.

4. Packed with practical, hands-on cookbook
recipes and plenty of example code, illustrating
the techniques to develop feature rich
applications using wxPython.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Bayesian Network Fundamentals
	Probability theory
	Random variable
	Independence and conditional independence

	Installing tools
	IPython
	pgmpy

	Representing independencies using pgmpy
	Representing joint probability distributions using pgmpy
	Conditional probability distribution
	Representing CPDs using pgmpy

	Graph theory
	Nodes and edges
	Walk, paths, and trails

	Bayesian models
	Representation
	Factorization of a distribution over a network
	Implementing Bayesian networks using pgmpy
	Bayesian model representation

	Reasoning pattern in Bayesian networks
	D-separation
	Direct connection
	Indirect connection

	Relating graphs and distributions
	IMAP
	IMAP to factorization

	CPD representations
	Deterministic CPDs
	Context-specific CPDs
	Tree CPD
	Rule CPD

	Summary

	Chapter 2: Markov Network Fundamentals
	Introducing the Markov network
	Parameterizing a Markov network – factor
	Factor operations

	Gibbs distributions and Markov networks

	The factor graph
	Independencies in Markov networks
	Constructing graphs from distributions
	Bayesian networks and Markov networks
	Converting Bayesian models into Markov models
	Converting Markov models into Bayesian models
	Chordal graphs

	Summary

	Chapter 3: Inference – Asking
Questions to Models
	Inference
	Complexity of inference

	Variable elimination
	Analysis of variable elimination
	Finding elimination ordering
	Using the chordal graph property of induced graphs
	Minimum fill/size/weight/search

	Belief propagation
	Clique tree
	Constructing a clique tree
	Message passing
	Clique tree calibration
	Message passing with division
	Factor division
	Querying variables that are not in the same cluster

	MAP using variable elimination
	Factor maximization
	MAP using belief propagation
	Finding the most probable assignment
	Predictions from the model using pgmpy
	A comparison of variable elimination and belief propagation
	Summary

	Chapter 4: Approximate Inference
	The optimization problem
	The energy function
	Exact inference as an optimization
	The propagation based approximation algorithm
	Cluster graph belief propagation
	Constructing cluster graphs
	Pairwise Markov networks
	Bethe cluster graph

	Propagation with approximate messages
	Message creation
	Inference with approximate messages
	Sum-product expectation propagation
	Belief update propagation

	Sampling-based approximate methods
	Forward sampling
	Conditional probability distribution
	Likelihood weighting and importance sampling
	Importance sampling
	Importance sampling in Bayesian networks
	Computing marginal probabilities
	Ratio likelihood weighting
	Normalized likelihood weighting

	Markov chain Monte Carlo methods
	Gibbs sampling
	Markov chains

	The multiple transitioning model
	Using a Markov chain
	Collapsed particles
	Collapsed importance sampling
	Summary

	Chapter 5: Model Learning – Parameter Estimation in Bayesian Networks
	General ideas in learning
	The goals of learning
	Density estimation
	Predicting specific probability values
	Knowledge discovery

	Learning as an optimization
	Empirical risk and overfitting

	Discriminative versus generative training
	Learning task
	Model constraints
	Data Observability

	Parameter learning
	Maximum likelihood estimation
	Maximum likelihood principle
	The maximum likelihood estimate for the Bayesian networks

	Bayesian parameter estimation
	Priors
	Bayesian parameter estimation for the Bayesian networks

	Structure learning in the Bayesian networks
	Methods for the learning structure
	Constraint-based structure learning
	Structure score learning
	The likelihood score
	The Bayesian score

	The Bayesian score for the Bayesian networks
	Summary

	Chapter 6: Model Learning – Parameter Estimation in
Markov Networks
	Maximum likelihood parameter estimation
	Likelihood function
	Log-linear model
	Gradient ascent

	Learning with approximate inference
	Belief propagation and pseudo-moment matching

	Structure learning
	Constraint-based structure learning

	Score-based structure learning
	The likelihood score
	Bayesian score

	Summary

	Chapter 7: Specialized Models
	The Naive Bayes model
	Why does it even work?
	Types of Naive Bayes models
	Multivariate Bernoulli Naive Bayes model
	Multinomial Naive Bayes model
	Choosing the right model

	Dynamic Bayesian networks
	Assumptions
	Discrete timeline assumption
	The Markov assumption
	Model representation

	The Hidden Markov model
	Generating an observation sequence
	Computing the probability of an observation
	The forward-backward algorithm
	Computing the state sequence

	Applications
	The acoustic model
	The language model

	Summary

	Index

