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Preface

This book focuses on the theoretical as well as practical uses of probabilistic 
graphical models, commonly known as PGM. This is a technique in machine learning 
in which we use the probability distribution over different variables to learn the 
model. In this book, we have discussed the different types of networks that can be 
constructed and the various algorithms for doing inference or predictions over these 
models. We have added examples wherever possible to make the concepts easier to 
understand. We also have code examples to promote understanding the concepts 
more effectively and working on real-life problems.

What this book covers
Chapter 1, Bayesian Network Fundamentals, discusses Bayesian networks (a type of 
graphical model), its representation, and the independence conditions that this type 
of network implies.

Chapter 2, Markov Network Fundamentals, discusses the other type of graphical model 
known as Markov network, its representation, and the independence conditions 
implied by it.

Chapter 3, Inference – Asking Questions to Models, discusses the various exact inference 
techniques used in graphical models to predict over newer data points.

Chapter 4, Approximate Inference, discusses the various methods for doing 
approximate inference in graphical models. As doing exact inference in the case of 
many real-life problems is computationally very expensive, approximate methods 
give us a faster way to do inference in such problems.
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Chapter 5, Model Learning – Parameter Estimation in Bayesian Networks, discusses 
the various methods to learn a Bayesian network using data points that we have 
observed. This chapter also discusses the various methods of learning the network 
structure with observed data.

Chapter 6, Model Learning – Parameter Estimation in Markov Networks, discusses  
various methods for learning parameters and network structure in the case of 
Markov networks.

Chapter 7, Specialized Models, discusses some special cases in Bayesian and Markov 
models that are very widely used in real-life problems, such as Naive Bayes, Hidden 
Markov models, and others.

What you need for this book
In this book, we have used IPython to run all the code examples. It is not necessary to 
use IPython but we recommend you to use it. Most of the code examples use pgmpy 
and sckit-learn. Also, we have used NumPy at places to generate random data.

Who this book is for
This book will be useful for researchers, machine learning enthusiasts, and people 
who are working in the data science field and have a basic idea of machine learning 
or graphical models. This book will help readers to understand the details of 
graphical models and use them in their day-to-day data science problems.

Conventions
In this book, you will find a number of text styles that distinguish between different 
kinds of information. Here are some examples of these styles and an explanation of 
their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 
"We are provided with five variables, namely sepallength, sepalwidth, 
petallength, petalwidth, and flowerspecies."
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A block of code is set as follows:

[default]
raw_data = np.random.randint(low=0, high=2, size=(1000, 5))
data = pd.DataFrame(raw_data, columns=['D', 'I', 'G', 'S', 'L'])

student_model = BayesianModel([('D', 'G'), ('I', 'G'), ('G', 'L'), 
('I', 'S')])

When we wish to draw your attention to a particular part of a code block, the 
relevant lines or items are set in bold:

[default]
raw_data = np.random.randint(low=0, high=2, size=(1000, 5))
data = pd.DataFrame(raw_data, columns=['D', 'I', 'G', 'S', 'L'])

student_model = BayesianModel([('D', 'G'), ('I', 'G'), ('G', 'L'), 
('I', 'S')])

student_model = BayesianModel([('D', 'G'), ('I', 'G'), ('G', 'L'), 
('I', 'S')])

New terms and important words are shown in bold.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or disliked. Reader feedback is important for us as it helps 
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention 
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide at www.packtpub.com/authors.

www.packtpub.com/authors
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Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you 
purchased this book elsewhere, you can visit http://www.packtpub.com/support 
and register to have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the 
changes in the output. You can download this file from http://www.packtpub.com/
sites/default/files/downloads/4684OS_ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you could report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form 
link, and entering the details of your errata. Once your errata are verified, your 
submission will be accepted and the errata will be uploaded to our website or added 
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required 
information will appear under the Errata section.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/sites/default/files/downloads/4684OS_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/4684OS_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
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Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all 
media. At Packt, we take the protection of our copyright and licenses very seriously. 
If you come across any illegal copies of our works in any form on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors and our ability to bring you 
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at 
questions@packtpub.com, and we will do our best to address the problem.
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Bayesian Network 

Fundamentals

A graphical model is essentially a way of representing joint probability distribution 
over a set of random variables in a compact and intuitive form. There are two main 
types of graphical models, namely directed and undirected. We generally use a 
directed model, also known as a Bayesian network, when we mostly have a causal 
relationship between the random variables. Graphical models also give us tools to 
operate on these models to find conditional and marginal probabilities of variables, 
while keeping the computational complexity under control.

In this chapter, we will cover:

• The basics of random variables, probability theory, and graph theory
• Bayesian models
• Independencies in Bayesian models
• The relation between graph structure and probability distribution in 

Bayesian networks (IMAP)
• Different ways of representing a conditional probability distribution
• Code examples for all of these using pgmpy
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Probability theory
To understand the concepts of probability theory, let's start with a real-life situation. 
Let's assume we want to go for an outing on a weekend. There are a lot of things to 
consider before going: the weather conditions, the traffic, and many other factors. 
If the weather is windy or cloudy, then it is probably not a good idea to go out. 
However, even if we have information about the weather, we cannot be completely 
sure whether to go or not; hence we have used the words probably or maybe. 
Similarly, if it is windy in the morning (or at the time we took our observations), we 
cannot be completely certain that it will be windy throughout the day. The same 
holds for cloudy weather; it might turn out to be a very pleasant day. Further, we 
are not completely certain of our observations. There are always some limitations in 
our ability to observe; sometimes, these observations could even be noisy. In short, 
uncertainty or randomness is the innate nature of the world. The probability theory 
provides us the necessary tools to study this uncertainty. It helps us look into options 
that are unlikely yet probable.

Random variable
Probability deals with the study of events. From our intuition, we can say that some 
events are more likely than others, but to quantify the likeliness of a particular event, 
we require the probability theory. It helps us predict the future by assessing how likely 
the outcomes are.

Before going deeper into the probability theory, let's first get acquainted with the basic 
terminologies and definitions of the probability theory. A random variable is a way of 
representing an attribute of the outcome. Formally, a random variable X is a function 
that maps a possible set of outcomes Ω to some set E, which is represented as follows:

X : Ω → E

As an example, let us consider the outing example again. To decide whether to 
go or not, we may consider the skycover (to check whether it is cloudy or not). 
Skycover is an attribute of the day. Mathematically, the random variable skycover 
(X) is interpreted as a function, which maps the day (Ω) to its skycover values (E). 
So when we say the event X = 40.1, it represents the set of all the days {ω} such 
that ( ) 40.1skycoverf w = , where skycoverf  is the mapping function. Formally speaking, 

( ){ }: 40.1skycoverw f wΩ =ε .

Random variables can either be discrete or continuous. A discrete random variable can 
only take a finite number of values. For example, the random variable representing 
the outcome of a coin toss can take only two values, heads or tails; and hence, it is 
discrete. Whereas, a continuous random variable can take infinite number of values. 
For example, a variable representing the speed of a car can take any number values.
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For any event whose outcome is represented by some random variable (X), we can 
assign some value to each of the possible outcomes of X, which represents how 
probable it is. This is known as the probability distribution of the random variable 
and is denoted by P(X).

For example, consider a set of restaurants. Let X be a random variable representing 
the quality of food in a restaurant. It can take up a set of values, such as {good, bad, 
average}. P(X), represents the probability distribution of X, that is, if P(X = good) = 0.3, 
P(X = average) = 0.5, and P(X = bad) = 0.2. This means there is 30 percent chance of a 
restaurant serving good food, 50 percent chance of it serving average food, and 20 
percent chance of it serving bad food.

Independence and conditional independence
In most of the situations, we are rather more interested in looking at multiple 
attributes at the same time. For example, to choose a restaurant, we won't only be 
looking just at the quality of food; we might also want to look at other attributes, 
such as the cost, location, size, and so on. We can have a probability distribution 
over a combination of these attributes as well. This type of distribution is known 
as joint probability distribution. Going back to our restaurant example, let the 
random variable for the quality of food be represented by Q, and the cost of food be 
represented by C. Q can have three categorical values, namely {good, average, bad}, 
and C can have the values {high, low}. So, the joint distribution for P(Q, C) would 
have probability values for all the combinations of states of Q and C. P(Q = good, C 
= high) will represent the probability of a pricey restaurant with good quality food, 
while P(Q = bad, C = low) will represent the probability of a restaurant that is less 
expensive with bad quality food.

Let us consider another random variable representing an attribute of a restaurant, its 
location L. The cost of food in a restaurant is not only affected by the quality of food 
but also the location (generally, a restaurant located in a very good location would 
be more costly as compared to a restaurant present in a not-very-good location). 
From our intuition, we can say that the probability of a costly restaurant located at 
a very good location in a city would be different (generally, more) than simply the 
probability of a costly restaurant, or the probability of a cheap restaurant located at a 
prime location of city is different (generally less) than simply probability of a cheap 
restaurant. Formally speaking, P(C = high | L = good) will be different from P(C = high) 
and P(C = low | L = good) will be different from P(C = low). This indicates that the 
random variables C and L are not independent of each other.
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These attributes or random variables need not always be dependent on each other. 
For example, the quality of food doesn't depend upon the location of restaurant. So, 
P(Q = good | L = good) or P(Q = good | L = bad)would be the same as P(Q = good), that 
is, our estimate of the quality of food of the restaurant will not change even if we have 
knowledge of its location. Hence, these random variables are independent of each other.

In general, random variables { }1 2, , , nX X X…  can be considered as independent of 
each other, if:

( ) ( ) ( ) ( )1 2 1 2, , , n nP X X X P X P X P X=… …

They may also be considered independent if:

( ) ( )1 2
1

, , ,
n

n i
i

P X X X P X
=

=∏…

We can easily derive this conclusion. We know the following from the chain rule of 
probability:

P(X, Y) = P(X) P(Y | X)

If Y is independent of X, that is, if X | Y, then P(Y | X) = P(Y). Then:

P(X, Y) = P(X) P(Y)

Extending this result on multiple variables, we can easily get to the conclusion that 
a set of random variables are independent of each other, if their joint probability 
distribution is equal to the product of probabilities of each individual random variable.

Sometimes, the variables might not be independent of each other. To make this 
clearer, let's add another random variable, that is, the number of people visiting the 
restaurant N. Let's assume that, from our experience we know the number of people 
visiting only depends on the cost of food at the restaurant and its location (generally, 
lesser number of people visit costly restaurants). Does the quality of food Q affect the 
number of people visiting the restaurant? To answer this question, let's look into the 
random variable affecting N, cost C, and location L. As C is directly affected by Q, 
we can conclude that Q affects N. However, let's consider a situation when we know 
that the restaurant is costly, that is, C = high and let's ask the same question, "does the 
quality of food affect the number of people coming to the restaurant?". The answer 
is no. The number of people coming only depends on the price and location, so if we 
know that the cost is high, then we can easily conclude that fewer people will visit, 
irrespective of the quality of food. Hence, |Q N C⊥ .

This type of independence is called conditional independence.
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Installing tools
Let's now see some coding examples using pgmpy, to represent joint distributions and 
independencies. Here, we will mostly work with IPython and pgmpy (and a few other 
libraries) for coding examples. So, before moving ahead, let's get a basic introduction 
to these.

IPython
IPython is a command shell for interactive computing in multiple programming 
languages, originally developed for the Python programming language, which offers 
enhanced introspection, rich media, additional shell syntax, tab completion, and a 
rich history. IPython provides the following features:

• Powerful interactive shells (terminal and Qt-based)
• A browser-based notebook with support for code, text, mathematical 

expressions, inline plots, and other rich media
• Support for interactive data visualization and use of GUI toolkits
• Flexible and embeddable interpreters to load into one's own projects
• Easy-to-use and high performance tools for parallel computing

You can install IPython using the following command:

>>> pip3 install ipython

To start the IPython command shell, you can simply type ipython3 in the terminal. 
For more installation instructions, you can visit http://ipython.org/install.html.

pgmpy
pgmpy is a Python library to work with Probabilistic Graphical models. As it's 
currently not on PyPi, we will need to build it manually. You can get the source code 
from the Git repository using the following command:

>>> git clone https://github.com/pgmpy/pgmpy

Now cd into the cloned directory switch branch for version used in this book and 
build it with the following code:

>>> cd pgmpy

>>> git checkout book/v0.1

>>> sudo python3 setup.py install

http://ipython.org/install.html
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For more installation instructions, you can visit http://pgmpy.org/install.html.

With both IPython and pgmpy installed, you should now be able to run the 
examples in the book.

Representing independencies using 
pgmpy
To represent independencies, pgmpy has two classes, namely IndependenceAssertion 
and Independencies. The IndependenceAssertion class is used to represent 
individual assertions of the form of ( )X Y⊥  or ( )|X Y Z⊥ . Let's see some code to 
represent assertions:

# Firstly we need to import IndependenceAssertion
In [1]: from pgmpy.independencies import IndependenceAssertion
# Each assertion is in the form of [X, Y, Z] meaning X is 
# independent of Y given Z.
In [2]: assertion1 = IndependenceAssertion('X', 'Y')
In [3]: assertion1
Out[3]: (X _|_ Y)

Here, assertion1 represents that the variable X is independent of the variable 
Y. To represent conditional assertions, we just need to add a third argument to 
IndependenceAssertion:

In  [4]: assertion2 = IndependenceAssertion('X', 'Y', 'Z')
In  [5]: assertion2
Out [5]: (X _|_ Y | Z)

In the preceding example, assertion2 represents ( )|X Y Z⊥ .

IndependenceAssertion also allows us to represent assertions in the form of 
( ), | ,X Y Z A B⊥ . To do this, we just need to pass a list of random variables as 
arguments:

In [4]: assertion2 = IndependenceAssertion('X', 'Y', 'Z')
In [5]: assertion2
Out[5]: (X _|_ Y | Z)

http://pgmpy.org/install.html
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Moving on to the Independencies class, an Independencies object is used to 
represent a set of assertions. Often, in the case of Bayesian or Markov networks, 
we have more than one assertion corresponding to a given model, and to represent 
these independence assertions for the models, we generally use the Independencies 
object. Let's take a few examples:

In [8]: from pgmpy.independencies import Independencies
# There are multiple ways to create an Independencies object, we 
# could either initialize an empty object or initialize with some
# assertions.

In [9]: independencies = Independencies() # Empty object
In [10]: independencies.get_assertions()
Out[10]: []

In [11]: independencies.add_assertions(assertion1, assertion2)
In [12]: independencies.get_assertions()
Out[12]: [(X _|_ Y), (X _|_ Y | Z)]

We can also directly initialize Independencies in these two ways:

In [13]: independencies = Independencies(assertion1, assertion2)
In [14]: independencies = Independencies(['X', 'Y'],
                                         ['A', 'B', 'C'])
In [15]: independencies.get_assertions()
Out[15]: [(X _|_ Y), (A _|_ B | C)]

Representing joint probability 
distributions using pgmpy
We can also represent joint probability distributions using pgmpy's 
JointProbabilityDistribution class. Let's say we want to represent the joint 
distribution over the outcomes of tossing two fair coins. So, in this case, the 
probability of all the possible outcomes would be 0.25, which is shown as follows:

In [16]: from pgmpy.factors import JointProbabilityDistribution as  
         Joint
In [17]: distribution = Joint(['coin1', 'coin2'], 
                              [2, 2], 
                              [0.25, 0.25, 0.25, 0.25])
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Here, the first argument includes names of random variable. The second argument is 
a list of the number of states of each random variable. The third argument is a list of 
probability values, assuming that the first variable changes its states the slowest. So, 
the preceding distribution represents the following:

In [18]: print(distribution)
╒═════════╤═════════╤══════════════════╕
│ coin1   │ coin2   │   P(coin1,coin2) │
╞═════════╪═════════╪══════════════════╡
│ coin1_0 │ coin2_0 │   0.2500         │
├─────────┼─────────┼──────────────────┤
│ coin1_0 │ coin2_1 │   0.2500         │
├─────────┼─────────┼──────────────────┤
│ coin1_1 │ coin2_0 │   0.2500         │
├─────────┼─────────┼──────────────────┤
│ coin1_1 │ coin2_1 │   0.2500         │
╘═════════╧═════════╧══════════════════╛

We can also conduct independence queries over these distributions in pgmpy:

In [19]: distribution.check_independence('coin1', 'coin2')
Out[20]: True

Conditional probability distribution
Let's take an example to understand conditional probability better. Let's say we have 
a bag containing three apples and five oranges, and we want to randomly take out 
fruits from the bag one at a time without replacing them. Also, the random variables 
1X  and 2X  represent the outcomes in the first try and second try respectively. So, as 

there are three apples and five oranges in the bag initially, ( )1 0.375P X apple= =  and 
( )1 0.625P X orange= = . Now, let's say that in our first attempt we got an orange. Now, 

we cannot simply represent the probability of getting an apple or orange in our second 
attempt. The probabilities in the second attempt will depend on the outcome of our first 
attempt and therefore, we use conditional probability to represent such cases. Now, 
in the second attempt, we will have the following probabilities that depend on the 

outcome of our first try: ( )2 1
3|
7

P X apple X orange= = = , ( )2 1
4|
7

P X orange X orange= = = , 

( )2 1
2|
7

P X apple X apple= = = , and ( )2 1
5|
7

P X orange X apple= = = .

The Conditional Probability Distribution (CPD) of two variables 1X and 2X  can 
be represented as ( )1 2|P X X , representing the probability of 1X  given 2X  that is 
the probability of 1X  after the event 2X  has occurred and we know it's outcome. 
Similarly, we can have ( )2 1|P X X  representing the probability of 2X  after having  
an observation for 1X .
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The simplest representation of CPD is tabular CPD. In a tabular CPD, we construct 
a table containing all the possible combinations of different states of the random 
variables and the probabilities corresponding to these states. Let's consider the 
earlier restaurant example.

Let's begin by representing the marginal distribution of the quality of food with Q. 
As we mentioned earlier, it can be categorized into three values {good, bad, average}. 
For example, P(Q) can be represented in the tabular form as follows:

Quality P(Q)

Good 0.3
Normal 0.5
Bad 0.2

Similarly, let's say P(L) is the probability distribution of the location of the restaurant. 
Its CPD can be represented as follows:

Location P(L)

Good 0.6
Bad 0.4

As the cost of restaurant C depends on both the quality of food Q and its location L, 
we will be considering P(C | Q, L), which is the conditional distribution of C, given 
Q and L:

Location Good Bad

Quality Good Normal Bad Good Normal Bad
Cost
High 0.8 0.6 0.1 0.6 0.6 0.05
Low 0.2 0.4 0.9 0.4 0.4 0.95

Representing CPDs using pgmpy
Let's first see how to represent the tabular CPD using pgmpy for variables that have 
no conditional variables:

In [1]: from pgmpy.factors import TabularCPD

# For creating a TabularCPD object we need to pass three
# arguments: the variable name, its cardinality that is the number
# of states of the random variable and the probability value
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# corresponding each state.
In [2]: quality = TabularCPD(variable='Quality',
                             variable_card=3,
                                values=[[0.3], [0.5], [0.2]])
In [3]: print(quality)
╒════════════════╤═════╕
│ ['Quality', 0] │ 0.3 │
├────────────────┼─────┤
│ ['Quality', 1] │ 0.5 │
├────────────────┼─────┤
│ ['Quality', 2] │ 0.2 │
╘════════════════╧═════╛
In [4]: quality.variables
Out[4]: OrderedDict([('Quality', [State(var='Quality', state=0), 
                                  State(var='Quality', state=1), 
                                  State(var='Quality', state=2)])])

In [5]: quality.cardinality
Out[5]: array([3])

In [6]: quality.values
Out[6]: array([0.3, 0.5, 0.2])

You can see here that the values of the CPD are a 1D array instead of a 2D array, 
which you passed as an argument. Actually, pgmpy internally stores the values  
of the TabularCPD as a flattened numpy array. We will see the reason for this in  
the next chapter.

In [7]: location = TabularCPD(variable='Location',
                              variable_card=2,
                              values=[[0.6], [0.4]])
In [8]: print(location)
╒═════════════════╤═════╕
│ ['Location', 0] │ 0.6 │
├─────────────────┼─────┤
│ ['Location', 1] │ 0.4 │
╘═════════════════╧═════╛

However, when we have conditional variables, we also need to specify them and the 
cardinality of those variables. Let's define the TabularCPD for the cost variable:

In [9]: cost = TabularCPD(
                      variable='Cost',
                      variable_card=2,
                      values=[[0.8, 0.6, 0.1, 0.6, 0.6, 0.05],
                              [0.2, 0.4, 0.9, 0.4, 0.4, 0.95]],
                      evidence=['Q', 'L'],
                      evidence_card=[3, 2])
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Graph theory
The second major framework for the study of probabilistic graphical models is graph 
theory. Graphs are the skeleton of PGMs, and are used to compactly encode the 
independence conditions of a probability distribution.

Nodes and edges
The foundation of graph theory was laid by Leonhard Euler when he solved the 
famous Seven Bridges of Konigsberg problem. The city of Konigsberg was set on 
both sides by the Pregel river and included two islands that were connected and 
maintained by seven bridges. The problem was to find a walk to exactly cross all the 
bridges once in a single walk.

To visualize the problem, let's think of the graph in Fig 1.1:

Fig 1.1: The Seven Bridges of Konigsberg graph
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Here, the nodes a, b, c, and d represent the land, and are known as vertices of the 
graph. The line segments ab, bc, cd, da, ab, and bc connecting the land parts are the 
bridges and are known as the edges of the graph. So, we can think of the problem 
of crossing all the bridges once in a single walk as tracing along all the edges of the 
graph without lifting our pencils.

Formally, a graph G = (V, E) is an ordered pair of finite sets. The elements of the set V 
are known as the nodes or the vertices of the graph, and the elements of 2E V⊆  are 
the edges or the arcs of the graph. The number of nodes or cardinality of G, denoted 
by |V|, are known as the order of the graph. Similarly, the number of edges denoted 
by |E| are known as the size of the graph. Here, we can see that the Konigsberg city 
graph shown in Fig 1.1 is of order 4 and size 7.

In a graph, we say that two vertices, u, v ϵ V are adjacent if u, v ϵ E. In the City graph, 
all the four vertices are adjacent to each other because there is an edge for every 
possible combination of two vertices in the graph. Also, for a vertex v ϵ V, we define 
the neighbors set of v as ( ){ }| ,u u v Eε . In the City graph, we can see that b and d are 
neighbors of c. Similarly, a, b, and c are neighbors of d.

We define an edge to be a self loop if the start vertex and the end vertex of the  
edge are the same. We can put it more formally as, any edge of the form (u, u),  
where u ϵ V is a self loop.

Until now, we have been talking only about graphs whose edges don't have a 
direction associated with them, which means that the edge (u, v) is same as the edge 
(v, u). These types of graphs are known as undirected graphs. Similarly, we can think 
of a graph whose edges have a sense of direction associated with it. For these graphs, 
the edge set E would be a set of ordered pair of vertices. These types of graphs are 
known as directed graphs. In the case of a directed graph, we also define the indegree 
and outdegree for a vertex. For a vertex v ϵ V, we define its outdegree as the number 
of edges originating from the vertex v, that is, ( ){ }| ,u v u Eε . Similarly, the indegree 
is defined as the number of edges that end at the vertex v, that is, ( ){ }| ,u u v Eε .

Walk, paths, and trails
For a graph G = (V, E) and u,v ϵ V, we define a u - v walk as an alternating sequence 
of vertices and edges, starting with u and ending with v. In the City graph of Fig 1.1, 
we can have an example of a - d walk as 1 2 3 6: , , , , , , , ,W a e b e c e b e d .
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If there aren't multiple edges between the same vertices, then we simply represent a 
walk by a sequence of vertices. As in the case of the Butterfly graph shown in Fig 1.2, 
we can have a walk W : a, c, d, c, e:

Fig 1.2: Butterfly graph—a undirected graph

A walk with no repeated edges is known as a trail. For example, the walk 
1 2 3 4: , , , , , , , ,W a e b e c e b e a  in the City graph is a trail. Also, a walk with no repeated 

vertices, except possibly the first and the last, is known as a path. For example, the 
walk 1 2 7 5: , , , , , , , ,W a e b e c e d e a  in the City graph is a path.

Also, a graph is known as cyclic if there are one or more paths that start and end at 
the same node. Such paths are known as cycles. Similarly, if there are no cycles in a 
graph, it is known as an acyclic graph.

Bayesian models
In most of the real-life cases when we would be representing or modeling some 
event, we would be dealing with a lot of random variables. Even if we would 
consider all the random variables to be discrete, there would still be exponentially 
large number of values in the joint probability distribution. Dealing with such huge 
amount of data would be computationally expensive (and in some cases, even 
intractable), and would also require huge amount of memory to store the probability 
of each combination of states of these random variables.

However, in most of the cases, many of these variables are marginally or conditionally 
independent of each other. By exploiting these independencies, we can reduce the 
number of values we need to store to represent the joint probability distribution.
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For instance, in the previous restaurant example, the joint probability distribution 
across the four random variables that we discussed (that is, quality of food Q, 
location of restaurant L, cost of food C, and the number of people visiting N) would 
require us to store 23 independent values. By the chain rule of probability, we know 
the following:

P(Q, L, C, N) = P(Q) P(L|Q) P(C|L, Q) P(N|C, Q, L)

Now, let us try to exploit the marginal and conditional independence between the 
variables, to make the representation more compact. Let's start by considering the 
independency between the location of the restaurant and quality of food over there. 
As both of these attributes are independent of each other, P(L|Q) would be the same 
as P(L). Therefore, we need to store only one parameter to represent it. From the 
conditional independence that we have seen earlier, we know that |N Q C⊥ .  
Thus, P(N|C, Q, L) would be the same as P(N|C, L); thus needing only four 
parameters. Therefore, we now need only (2 + 1 + 6 + 4 = 13) parameters to  
represent the whole distribution.

We can conclude that exploiting independencies helps in the compact representation 
of joint probability distribution. This forms the basis for the Bayesian network.

Representation
A Bayesian network is represented by a Directed Acyclic Graph (DAG) and a set of 
Conditional Probability Distributions (CPD) in which:

• The nodes represent random variables
• The edges represent dependencies
• For each of the nodes, we have a CPD

In our previous restaurant example, the nodes would be as follows:

• Quality of food (Q)
• Location (L)
• Cost of food (C)
• Number of people (N)
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As the cost of food was dependent on the quality of food (Q) and the location of 
the restaurant (L), there will be an edge each from Q → C and L → C. Similarly, 
as the number of people visiting the restaurant depends on the price of food and 
its location, there would be an edge each from L → N and C → N. The resulting 
structure of our Bayesian network is shown in Fig 1.3:

Fig 1.3: Bayesian network for the restaurant example
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Factorization of a distribution over a network
Each node in our Bayesian network for restaurants has a CPD associated to it. 
For example, the CPD for the cost of food in the restaurant is P(C|Q, L), as it only 
depends on the quality of food and location. For the number of people, it would be 
P(N|C, L) . So, we can generalize that the CPD associated with each node would 
be P(node|Par(node)) where Par(node) denotes the parents of the node in the graph. 
Assuming some probability values, we will finally get a network as shown in Fig 1.4:

Fig 1.4: Bayesian network of restaurant along with CPDs

Let us go back to the joint probability distribution of all these attributes of the 
restaurant again. Considering the independencies among variables, we concluded as 
follows:

P(Q,C,L,N) = P(Q)P(L)P(C|Q, L)P(N|C, L)

So now, looking into the Bayesian network (BN) for the restaurant, we can say that 
for any Bayesian network, the joint probability distribution ( )1 2, , , nP X X XK  over all 
its random variables { }1 2, , , nX X X…  can be represented as follows:

( ) ( )( )1 2
1

, , , |
n

n i i
i

P X X X P X Par X
=

=∏K
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This is known as the chain rule for Bayesian networks.

Also, we say that a distribution P factorizes over a graph G, if P can be encoded  
as follows:

( ) ( )( )1 2
1

, , , |
n

n i G i
i

P X X X P X Par X
=

=∏K

Here, ( )GPar X  is the parent of X in the graph G.

Implementing Bayesian networks using 
pgmpy
Let us consider a more complex Bayesian network of a student getting late for school, 
as shown in Fig 1.5:

Fig 1.5: Bayesian network representing a particular day of a student going to school

For this Bayesian network, just for simplicity, let us assume that each random variable is 
discrete with only two possible states {yes, no}.
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Bayesian model representation
In pgmpy, we can initialize an empty BN or a model with nodes and edges. We can 
initializing an empty model as follows:

In [1]: from pgmpy.models import BayesianModel
In [2]: model = BayesianModel()

We can now add nodes and edges to this network:

In [3]: model.add_nodes_from(['rain', 'traffic_jam'])
In [4]: model.add_edge('rain', 'traffic_jam')

If we add an edge, but the nodes, between which the edge is, are not present in the model, 
pgmpy automatically adds those nodes to the model.

In [5]: model.add_edge('accident', 'traffic_jam')
In [6]: model.nodes()
Out[6]: ['accident', 'rain', 'traffic_jam']
In [7]: model.edges()
Out[7]: [('rain', 'traffic_jam'), ('accident', 'traffic_jam')]

In the case of a Bayesian network, each of the nodes has an associated CPD with it. 
So, let's define some tabular CPDs to associate with the model:

The name of the variable in tabular CPD should be exactly 
the same as the name of the node used while creating the 
Bayesian network, as pgmpy internally uses this name to 
match the tabular CPDs with the nodes.

In [8]: from pgmpy.factors import TabularCPD
In [9]: cpd_rain = TabularCPD('rain', 2, [[0.4], [0.6]])
In [10]: cpd_accident = TabularCPD('accident', 2, [[0.2], [0.8]])
In [11]: cpd_traffic_jam = TabularCPD(
                                'traffic_jam', 2,
                                [[0.9, 0.6, 0.7, 0.1],
                                 [0.1, 0.4, 0.3, 0.9]],
                                evidence=['rain', 'accident'],
                                evidence_card=[2, 2])

Here, we defined three CPDs. We now need to associate them with our model. To 
associate them with the model, we just need to use the add_cpd method and pgmpy 
automatically figures out which CPD is for which node:

In [12]: model.add_cpds(cpd_rain, cpd_accident, cpd_traffic_jam)
In [13]: model.get_cpds()
Out[13]:
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[<TabularCPD representing P(rain:2) at 0x7f477b6f9940>,
 <TabularCPD representing P(accident:2) at 0x7f477b6f97f0>,
 <TabularCPD representing P(traffic_jam:2 | rain:2, accident:2) at 
                                                  0x7f477b6f9e48>]

Now, let's add the remaining variables and their CPDs:

In [14]: model.add_node('long_queues')
In [15]: model.add_edge('traffic_jam', 'long_queues')
In [16]: cpd_long_queues = TabularCPD('long_queues', 2,
                                      [[0.9, 0.2],
                                       [0.1, 0.8]],
                                      evidence=['traffic_jam'],
                                      evidence_card=[2])
In [17]: model.add_cpds(cpd_long_queues)
In [18]: model.add_nodes_from(['getting_up_late',  
                               'late_for_school'])
In [19]: model.add_edges_from(
                   [('getting_up_late', 'late_for_school'),
                    ('traffic_jam', 'late_for_school')])
In [20]: cpd_getting_up_late = TabularCPD('getting_up_late', 2,
                                          [[0.6], [0.4]])
In [21]: cpd_late_for_school = TabularCPD(
                               'late_for_school', 2,
                               [[0.9, 0.45, 0.8, 0.1],
                                [0.1, 0.55, 0.2, 0.9]],
                               evidence=['getting_up_late',
                                         'traffic_jam'],
                               evidence_card=[2, 2])
In [22]: model.add_cpds(cpd_getting_up_late, cpd_late_for_school)
In [23]: model.get_cpds()
Out[23]:
[<TabularCPD representing P(rain:2) at 0x7f477b6f9940>,
 <TabularCPD representing P(accident:2) at 0x7f477b6f97f0>,
 <TabularCPD representing P(traffic_jam:2 | rain:2, accident:2) at 
                                                  0x7f477b6f9e48>,
 <TabularCPD representing P(long_queues:2 | traffic_jam:2) at 
                                                  0x7f477b7051d0>,
 <TabularCPD representing P(getting_up_late:2) at 0x7f477b7059e8>,
 <TabularCPD representing P(late_for_school:2 | getting_up_late:2, 
                                traffic_jam:2) at 0x7f477b705dd8>]
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Additionally, pgmpy also provides a check_model method that checks whether the 
model and all the associated CPDs are consistent:

In [24]: model.check_model()
Out[25]: True

In case we have got some wrong CPD associated with the model and we want to 
remove it, we can use the remove_cpd method. Let's say we want to remove the CPD 
associated with variable late_for_school, we could simply do as follows:

In [26]: model.remove_cpds('late_for_school')
In [27]: model.get_cpds()
Out[27]:
[<TabularCPD representing P(rain:2) at 0x7f477b6f9940>,
 <TabularCPD representing P(accident:2) at 0x7f477b6f97f0>,
 <TabularCPD representing P(traffic_jam:2 | rain:2, accident:2) at 
                                                  0x7f477b6f9e48>,
 <TabularCPD representing P(long_queues:2 | traffic_jam:2) at 
                                                  0x7f477b7051d0>,
 <TabularCPD representing P(getting_up_late:2) at 0x7f477b7059e8>]

Reasoning pattern in Bayesian networks
Would the probability of having a road accident change if I knew that there was a 
traffic jam? Or, what are the chances that it rained heavily today if some student 
comes late to class? Bayesian networks helps in finding answers to all these questions. 
Reasoning patterns are key elements of Bayesian networks.

Before answering all these questions, we need to compute the joint probability 
distribution. For ease in naming the nodes, let's denote them as follows:

• Traffic accident as A
• Heavy rain as B
• Traffic jam as J
• Getting up late as G
• Long queues as Q
• Late to school as L

From the chain rule of the Bayesian network, we have the joint probability 
distribution JP  as follows:

( ) ( ) ( ) ( ) ( ) ( ), , , , , | , | | ,JP P A R J G L Q P A P R P J A R P Q G P L G J= =
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Starting with a simple query, what are the chances of having a traffic jam if I know 
that there was a road accident? This question can be put formally as what is the value 
of P(J|A = True)?

First, let's compute the probability of having a traffic jam P(J). P(J) can be computed 
by summing all the cases in the joint probability distribution, where J = True and J = 
False, and then renormalize the distribution to sum it to 1. We get P(J = True) = 0.416 
and P(J = True) = 0.584.

To compute P(J|A = True), we have to eliminate all the cases where A = False, and 
then we can follow the earlier procedure to get P(J|A = True). This results in P(J = 
True|A = True) = 0.72 and P(J = False|A = True) = 0.28. We can see that the chances 
of having a traffic jam increased when we knew that there was an accident. These 
results match with our intuition. From this, we conclude that the observation of 
the outcome of the parent in a Bayesian network influences the probability of its 
children. This is known as causal reasoning. Causal reasoning need not only be the 
effect of parent on its children; it can go further downstream in the network.

We have seen that the observation of the outcome of parents influence the 
probability of the children. Is the inverse possible? Let's try to find the probability of 
heavy rain if we know that there is a traffic accident. To do so, we have to eliminate 
all the cases where J = False and then reduce the probability to get P(R|J = True). This 
results in P(R = True|J = True) = 0.7115 and P(R = False|J = True) = 0.2885. This is 
also intuitive. If we knew that there was a traffic jam, then the chances of heavy rain 
would increase. This is known as evidential reasoning, where the observation of the 
outcomes of the children or effect influences the probability of parents or causes.

Let's look at another type of reasoning pattern. If we knew that there was a traffic 
jam on a day when there was no heavy rain, would it affect the chances of a traffic 
accident? To do so, we have to follow a similar procedure of eliminating all those 
cases, except the ones where R = False and J = True. By doing so, we would get P(A 
= True|J = True, R = False) = 0.6 and P(A = False|J = True, R = False) = 0.4. Now, the 
probability of an accident increases, which is what we had expected. As we can 
see that before the observation of the traffic jam, both the random variables, heavy 
rain and traffic accident, were independent of each other, but with the observation 
of their common children, they are now dependent on each other. This type of 
reasoning is called as intercausal reasoning, where different causes with the same 
effect influence each other.
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D-separation
In the last section, we saw how influence flows in a Bayesian network, and how 
observing some event changes our belief about other variables in the network. In this 
section, we will discuss the independence conditions that hold in a Bayesian network 
no matter which probability distribution is parameterizing the network.

In any network, there can be two types of connections between variables, direct or 
indirect. Let's start by discussing the direct connection between variables.

Direct connection
In the case of direct connections, we have a direct connection between two variables, 
that is, there's an edge X → Y in the graph G. In the case of a direct connection, we 
can always find some probability distribution where they are dependent. Hence, 
there is no independence condition in a direct connection, no matter which other 
variables are observed in the network.

Indirect connection
In the case of indirect connections, we have four different ways in which the 
variables can be connected. They are as follows:

Fig 3(a): Indirect causal relationship

Fig 3(b): Indirect evidential relationship

Fig 3(c): Common cause relationship

Fig 3(d): Common effect relationship
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• Indirect causal effect: Fig 3(a) shows an indirect causal relationship between 
variables X and Y. For intuition, let's consider the late-for-school model, 
where A → J →L is a causal relationship. Let's first consider the case where 
J is not observed. If we observe that there has been an accident, then it 
increases our belief that there would be a traffic jam, which eventually 
leads to an increase in the probability of getting late for school. Here we see 
that if the variable J is not observed, then A is able to influence L through J. 
However, if we consider the case where J is observed, say we have observed 
that there is a traffic jam, then irrespective of whether there has been an 
accident or not, it won't change our belief of getting late for school. Therefore, 
in this case we see that |A L J⊥ .
More often, in the case of an indirect causal relationship |X Y Z⊥ .

• Indirect evidential effect: Fig 3(b) represents an indirect evidential 
relationship. In the late-for-school model, we can again take the example 
of L → J ← A. Let's first take the case where we haven't observed J. Now, 
if we observe that somebody is late for school, it increases our belief that 
there might be a traffic jam, which increases our belief about there being an 
accident. This leads us to the same results as we got in the case of an indirect 
causal effect. The variables X and Y are dependent, but become independent 
if we observe Z, that is |X Y Z⊥ .

• Common cause: Fig 3(c) represents a common cause relationship. Let's take the 
example of L ← J → Q from our late-for-school model. Taking the case where 
J is not observed, we see that getting late for school makes our belief of being 
in a traffic jam stronger, which also leads to an increase in the probability of 
being in a long queue. However, what if we already have observed that there 
was a traffic jam? In this case, getting late for school doesn't have any effect on 
being in a long queue. Hence, we see that the independence conditions in this 
case are also the same as we saw in the previous two cases, that is, X is able to 
influence Y through Z only if Z is not observed.

• Common effect: Fig 3(d) represents a common effect relationship. Taking 
the example of A → J ← B from the late-for-school model, if we have an 
observation that there was an accident, it increases the probability of having 
a traffic jam, but does not have any effect on the probability of heavy rain. 
Hence, A | B. We see that we have a different observation here than the 
previous three cases. Now, if we consider the case when J is observed, let's 
say that there has been a jam. If we now observe that there hasn't been an 
accident, it does increase the probability that there might have been heavy 
rain. Hence, A is not independent of B if J is observed. More generally, we 
can say that in the case of common effect, X is independent of Y if, and only 
if, Z is not observed.
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Now, in a network, how do we know if a variable influences another variable? Let's 
say we want to check the independence conditions for 1X and nX . Also, let's say 
they are connected by a trail 1 2 1n nX X X X−↔ ↔ ↔ ↔K  and let Z be the set of 
observed variables in the Bayesian network. In this case, 1X will be able to influence 

nX  if and only if the following two conditions are satisfied:

• For every V structure of the form 1 1i i iX X X− +→ ←  in the trail, either iX Zε  
or any descendant of iX is an element of Z

• No other node on the trail is in Z

Also, if an influence can flow in a trail in a network, it is known as an active trail. Let's 
see some examples to check the active trails using pgmpy for the late-for-school model:

In [28]: model.is_active_trail('accident', 'rain')
Out[28]: False
In [29]: model.is_active_trail('accident', 'rain', 
                               observed='traffic_jam')
Out[29]: True
In [30]: model.is_active_trail('getting_up_late', 'rain')
Out[30]: False
In [31]: model.is_active_trail('getting_up_late', 'rain',
                               observed='late_for_school')
Out[31]: True

Relating graphs and distributions
In the restaurant example or the late-for-school example, we used the Bayesian 
network to represent the independencies in the random variables. We also saw that 
we can use the Bayesian network to represent the joint probability distribution over 
all the variables using the chain rule. In this section, we will unify these two concepts 
and show that a probability distribution D can only be represented using a graph G, 
if and only if D can be represented as a set of CPDs associated with the graph G.

IMAP
A graph object G is called an IMAP of a probability distribution D if the set 
of independency assertions in G, denoted by I(G), is a subset of the set of 
independencies in D, denoted by I(D).
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Let's take an example of two random variables X and Y with the following two 
different probability distributions over it:

X Y P(X, Y)

0x 0y 0.25

0x 1y 0.25

1x 0y 0.25

1x 1y 0.25

In this distribution, we can see that P(X) = 0.5 and P(Y) = 0.5. Also, P(X, Y) = P(X)
P(Y). Hence, the two random variables X and Y are independent. If we try to 
represent any two random variables using a network, we have three possibilities:

• A graph with two disconnected nodes X and Y
• A graph with an edge from X → Y
• A graph with an edge from Y → X

We can see from the previous distribution that ( ) { }I D X Y= ⊥ . In the case of 
disconnected nodes, we also have ( ) { }I G X Y= ⊥ , whereas for the other two graphs, 
we have I(G) = φ . Hence, all the three graphs are IMAPS of the distribution, and any 
of these can be used to represent the probability distribution. However, the graph 
with both nodes disconnected is able to best represent the probability distribution 
and is known as the Perfect Map.

IMAP to factorization
The structure of the Bayesian network encodes the independencies between the 
random variables, and every probability distribution for which this BN is an 
IMAP needs to satisfy these independencies. This allows us to represent the joint 
probability distribution in a very compact form.

Taking the example of the late-for-school model, using the chain rule, we can show 
that for any distribution, the joint probability distribution would be as follows:

P(A, R, J, L, S, Q) = P(A) × P(R|A) × P(J|A, R) × P(L|A, R, J) × P(S|A, R, J, L) × 

                                  P(Q|A, R, J, L, S)
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However, if we consider a distribution for which the BN is an IMAP, we get 
information about the independencies in the distribution. As we can see in this 
example, we know from the Bayesian network structure that S is independent of 
A and R, given J and L; Q is independent of A, R, and L, and S, given J; and so on. 
Applying all these conditions on the equation for joint probability distribution 
reduces it to the following:

P(A, R, J, L, S, Q) = P(A) × P(R) × P(J|A, R) × P(L) × P(S|J, L) × P(Q|J)

Every graph object has associated independencies with it. These independencies 
allow us to represent the joint probability distribution of the BN in a compact form.

CPD representations
Till now, we have only been working with tabular CPDs. In a tabular CPD, we take 
all the possible combinations of different states of a variable and represent them 
in a tabular form. However, in many cases, tabular CPD is not the best choice to 
represent CPDs. We can take the example of a continuous random variable. As a 
continuous variable doesn't have states (or let's say infinite states), we can never 
create a tabular representation for it. There are many other cases which we will 
discuss in this section when other types of representation are a better choice.

Deterministic CPDs
One of the cases when the tabular CPD isn't a good choice is when we have a 
deterministic random variable, whose value depends only on the values of its parents 
in the model. For such a variable X with parents Par(X), we have the following:

( )( ) ( )( ){1 if0 otherwise| x f Par XP X Par X ==

Here, ( )( ) ( ):f Val Par X Val X→ .
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We can take the example of logic gates (AND, OR, and so on), where the output of 
the gate is deterministic in nature and depends only on its inputs. We represent it as 
a Bayesian network, as shown in Fig 1.7:

Fig 1.7: A Bayesian network for a logic gate. X and Y are the inputs, A and B are the outputs  
and Z is a deterministic variable representing the operation of the logic gate.

Here, X and Y are the inputs to the logic gate and Z is the output. We usually denote 
a deterministic variable by double circles. We can also see that having a deterministic 
variable gives up more information about the independencies in the network. If 
we are given the values of X and Y, we know the value of Z, which leads us to the 
assertion ( )1 0

1 : , : 0T Lρ .
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Context-specific CPDs
We saw the case of deterministic variables where there was a structure in the 
CPD, which can help us reduce the size of the whole CPD table. As in the case of 
deterministic variables, structure may occur in many other problems as well. Think 
of adding a variable Flat Tyre to our late-for-school model. If we have a Flat Tyre (F), 
irrespective of the values of all other variables, the value of the Late for school variable 
is always going to be 1. If we think of representing this situation using a tabular 
CPD, we will have all the values for Late for school corresponding to F = 1 that will be 
1, which would essentially be half the table. Hence, if we use tabular CPD, we will 
be wasting a lot of memory to store values that can simply be represented by a single 
condition. In such cases, we can use the Tree CPD or Rule CPD.

Tree CPD
A great option to represent such context-specific cases is to use a tree structure 
to represent the various contexts. In a Tree CPD, each leaf represents the various 
possible conditional distributions, and the path to the leaf represents the conditions 
for that distribution. Let's take an example by adding a Flat Tyre variable to our 
earlier model, as shown in Fig 1.8:

Fig 1.8: Network after adding Flat Tyre (T) variable
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If we represent the CPD of L using a Tree CPD, we will get something like this:

Fig 1.9: Tree CPD in case of Flat tyre

Here, we can see that rather than having four values for the CPD, which we would 
have to store in the case of Tabular CPD, we only need to store three values in the 
case of the Tree CPD. This improvement doesn't seem very significant right now, 
but when we have a large number of variables with high cardinalities, there is a very 
significant improvement.

Now, let's see how we can implement this using pmgpy:

In [1]: from pgmpy.factors import TreeCPD, Factor
In [2]: tree_cpd = TreeCPD([
                   ('B', Factor(['A'], [2], [0.8, 0.2]), '0'),
                   ('B', 'C', '1'),
                   ('C', Factor(['A'], [2], [0.1, 0.9]), '0'),
                   ('C', 'D', '1'),
                   ('D', Factor(['A'], [2], [0.9, 0.1]), '0'),
                   ('D', Factor(['A'], [2], [0.4, 0.6]), '1')])

pgmpy also supports Tree CPDs, where each node has 
more than one variable.
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Rule CPD
Rule CPD is another more explicit form of representation of CPDs. Rule CPD is 
basically a set of rules along with the corresponding values of the variable. Taking 
the same example of Flat Tyre, we get the following Rule CPD:

( )
( )
( )
( )
( )
( )

1 0
1

1 1
2

0 1 0
3

1 1 1
4

0 0 0
5

0 0 1
6

: , : 0

: , :1

: , , : 0.95

: , , : 0.05

: , , : 0.03

: , , : 0.97

T L

T L

T J L

T J L

T J L

T J L

ρ

ρ

ρ

ρ

ρ

ρ

Let's see the code implementation using pgmpy:

In [1]: from pgmpy.factors import RuleCPD
In [2]: rule = RuleCPD('A', {('A_0', 'B_0'): 0.8,
                             ('A_1', 'B_0'): 0.2,
                             ('A_0', 'B_1', 'C_0'): 0.4,
                             ('A_1', 'B_1', 'C_0'): 0.6,
                             ('A_0', 'B_1', 'C_1'): 0.9,
                             ('A_1', 'B_1', 'C_1'): 0.1})

Summary
In this chapter, we saw how we can represent a complex joint probability 
distribution using a directed graph and a conditional probability distribution 
associated with each node, which is collectively known as a Bayesian network. We 
discussed the various reasoning patterns, namely causal, evidential, and intercausal, 
in a Bayesian network and how changing the CPD of a variable affects other 
variables. We also discussed the concept of IMAPS, which helped us understand 
when a joint probability distribution can be encoded in a graph structure.

In the next chapter, we will see that when the relationship between the variables are 
not causal, a Bayesian model is not sufficient to model our problems. To work with 
such problems, we will introduce another type of undirected model, known as a 
Markov model.
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Markov Network 

Fundamentals

In the previous chapter, we saw how we can represent a joint probability 

distribution (JPD) using a directed graph and a set of conditional probability 

distributions (CPDs). However, it's not always possible to capture the 
independencies of a distribution using a Bayesian model. In this chapter, we will 
introduce undirected models, also known as Markov networks. We generally use 
Markov networks when we can't naturally define directionality in the interaction 
between random variables.

In this chapter, we will cover:

• The basics of factors and their operations
• The Markov model and Gibbs distribution
• The factor graph
• Independencies in the Markov model
• Conversion of the Bayesian model to the Markov model and vice versa
• Chordal graphs and triangulation heuristics
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Introducing the Markov network
Let's take an example of four people who go out for dinner in different groups of two. 
A goes out with B, B goes out with C, C with D, and D with A. Due to some reasons 
(maybe due to a bad relationship), B doesn't want to go with D, and the same holds 
true for A and C. Let's think about the probability of them ordering food of the same 
cuisine. From our social experience, we know that people interacting with each other 
may influence each other's choice of food. In general, we can say that if A influences 
B's choice and B influences C's, then A might (as it is probabilistic) indirectly be 
influencing C's choice. However, given B's and D's choices, we can say with confidence 
that A won't affect C's choice of food. Formally, we can put this as | ,A C B D⊥ . Similarly, 

| ,B D A C⊥  as there is no direct interaction between A and C nor between B and D.

Let's try to model these independencies using a Bayesian network:

In the preceding figure, the one labeled Fig 2.1(a) is the Bayesian network 
representing | ,A C B D⊥ , whereas the one labeled Fig 2.1(b) is the Bayesian  
network representing | ,B D A C⊥

The first Bayesian network, Fig 2.1(a), satisfied the first independence assertion, that 
is, | ,A C B D⊥ , but it couldn't satisfy the second one. Similarly, the second Bayesian 
network, Fig 2.1(b), satisfied the independence assertion | ,B D A C⊥ , but not the 
other one. Thus, neither of them is an I-Map for the distribution. Hence, we see that 
directed models have a limitation and there are conditions that we are unable to 
represent using directed models.
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Fig 2.2 Undirected graphical model encoding independencies | ,A C B D⊥  and | ,B D A C⊥

To correctly represent these independencies, we require an undirected model, also 
known as a Markov network. These are similar to the Bayesian network, in the sense 
that we represent all the random variables in the form of nodes, but we represent 
the dependencies or interaction between these random variables with an undirected 
edge. Before we go into the representation of these models, we need to think about 
the parameterization of these models. In the Bayesian network, we had a CPD 
( | (X ))i iP X Par  associated with every node iX . As we don't have any directional 

influence or a parent-children relationship in the case of the Markov network, 
instead of using CPDs, we use a more symmetric representation called factor, which 
basically represents how likely it is for some states of a variable to agree with the 
states of other variables.

Parameterizing a Markov network – factor
Formally, a factor φ  of a set of random variables X is defined as a function mapping 
values of X to some real number 

!

:

X Val X! "( ) : ( ) !
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Unlike CPDs, there is no notion of directionality or causal relationship among 
random variables in factors. Factors help in symmetric parameterization of random 
variables. As the values in a factor don't represent the probability, they are not 
constrained to sum up to 1 or to be in the range [0,1]. In general, they represent the 
similarities (or, sometimes, compatibility) among the random variables. Therefore, 
the higher the value of a combination of states, the greater the compatibility for those 
states of variables. For example, if we say that two binary random variables A and 
B are likely to be in the same state rather than different states, we can have a factor 
where 0 0 0 1( , ) ( , )a b a bφ φ> , 0 0 1 0( , ) ( , )a b a bφ φ> , 1 1 1 0( , ) ( , )a b a bφ φ> , and 1 1 0 1( , ) ( , )a b a bφ φ> . 
This situation can be represented by a factor as follows:

A B ( )A,Bφ

0a 0b 1000

0a 1b 1

1a 0b 5

1a 1b 100

We also define the scope of a factor to be the set of random variables over which it is 
defined. For example, the scope of the preceding factor is {A, B}.

In pgmpy, we can define factors in the following way:

# Firstly we need to import Factor
In [1]: from pgmpy.factors import Factor

# Each factor is represented by its scope,
# cardinality of each variable in the scope and their values
In [2]: phi = Factor(['A', 'B'], [2, 2], [1000, 1, 5, 100])

In pgmpy, the order in which variables are passed to the factor 
also has significance. The entries in the factors assume that the 
random variables on the right change more frequently than the 
ones present on left (as represented in the previous example).
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Now let's try printing a factor:

In [3]: print(phi)

a b phi(A,B)

A_0 B_0 1000.0000
A_0 B_1 1.0000
A_1 B_0 5.0000
A_1 B_1 100.0000

Factors subsume the notion of CPD. So, in pgmpy, CPD classes such as TabularCPD, 
TreeCPD, and RuleCPD are derived from the Factor class.

Factor operations
There are numerous mathematical operations on factors; the major ones are 
marginalization, reduction, and product.

The marginalization of a factor is similar to its probabilistic marginalization. If we 
marginalize a factor φ  whose scope is W with respect to a set of random variables X, it 
means to sum out all the entries of X, to reduce its scope to { }W - X . Here's an example 
for marginalizing a factor:

# In the preceding example phi, let's try to marginalize it with 
# respect to B
In [4]: phi_marginalized = phi.marginalize('B', inplace=False)
In [5]: phi_marginalized.scope()
Out[6]: ['A']
# If inplace=True (default), it would modify the original factor 
# instead of returning a new one
In [7]: phi.marginalize('A')
In [8]: print(phi)
╒═════╤═══════════=╕
│ B   │    phi(B)  │
╞═════╪═══════════=╡
│ B_0 │ 1005.0000  │
├─────┼───────────-┤
│ B_1 │  101.0000  │
╘═════╧═══════════=╛

In [9]: phi.scope()
Out[9]: ['B']

# A factor can be also marginalized with respect to more than one  
# random variable
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In [10]: price = Factor(['price', 'quality', 'location'], 
                        [2, 2, 2], 
                        np.arange(8))
In [11]: price_marginalized = price.marginalize(
                                   ['quality', 'location'], 
                                   inplace=False)
In [12]: price_marginalized.scope()
Out[12]: ['price']
In [13]: print(price_marginalized)
╒═════════╤══════════════╕
│ price   │   phi(price) │
╞═════════╪══════════════╡
│ price_0 │       6.0000 │
├─────────┼──────────────┤
│ price_1 │      22.0000 │
╘═════════╧══════════════╛

Reduction of a factor φ  whose scope is W to the context ix  means removing all 
the entries from the factor where iX x= . This reduces the scope to W X− , as φ  no 
longer depends on X.

# In the preceding example phi, let's try to reduce to the context 
# of b_0
In [14]: phi = Factor(['a', 'b'], [2, 2], [1000, 1, 5, 100])
In [15]: phi_reduced = phi.reduce(('b', 0), inplace=False)
In [16]: print(phi_reduced)
╒═════╤═══════════╕
│ a   │    phi(a) │
╞═════╪═══════════╡
│ a_0 │ 1000.0000 │
├─────┼───────────┤
│ a_1 │    5.0000 │
╘═════╧═══════════╛

In [17]: phi_reduced.scope()
Out[17]: ['a']

# If inplace=True (default), it would modify the original factor
# instead of returning a new object.
In [18]: phi.reduce(('a', 1))
In [19]: print(phi)
╒═════╤══════════╕
│ b   │   phi(b) │
╞═════╪══════════╡
│ b_0 │   5.0000 │
├─────┼──────────┤
│ b_1 │ 100.0000 │
╘═════╧══════════╛
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In [20]: phi.scope()
Out[20]: ['b']

# A factor can be also reduced with respect to more than one
# random variable
In [21]: price_reduced = price.reduce(
                       [('quality', 0), ('location', 1)], 
                       inplace=False)
In [22]: price_reduced.scope()
Out[22]: ['price']

The term factor product refers to the product of factors 1φ  with a scope X and 2φ  with 
scope Y to produce a factor φ  with a scope X Y∪ :

In [23]: phi1 = Factor(['a', 'b'], [2, 2], [1000, 1, 5, 100])
In [24]: phi2 = Factor(['b', 'c'], [2, 3],
                       [1, 100, 5, 200, 3, 1000])
# Factors product can be accomplished with the * (product)
# operator
In [25]: phi = phi1 * phi2
In [26]: phi.scope()
Out[26]: ['a', 'b', 'c']
In [27]: print(phi)
╒═════╤═════╤═════╤══════════════╕
│ a   │ b   │ c   │   phi(a,b,c) │
╞═════╪═════╪═════╪══════════════╡
│ a_0 │ b_0 │ c_0 │    1000.0000 │
├─────┼─────┼─────┼──────────────┤
│ a_0 │ b_0 │ c_1 │  100000.0000 │
├─────┼─────┼─────┼──────────────┤
│ a_0 │ b_0 │ c_2 │    5000.0000 │
├─────┼─────┼─────┼──────────────┤
│ a_0 │ b_1 │ c_0 │     200.0000 │
├─────┼─────┼─────┼──────────────┤
│ a_0 │ b_1 │ c_1 │       3.0000 │
├─────┼─────┼─────┼──────────────┤
│ a_0 │ b_1 │ c_2 │    1000.0000 │
├─────┼─────┼─────┼──────────────┤
│ a_1 │ b_0 │ c_0 │       5.0000 │
├─────┼─────┼─────┼──────────────┤
│ a_1 │ b_0 │ c_1 │     500.0000 │
├─────┼─────┼─────┼──────────────┤
│ a_1 │ b_0 │ c_2 │      25.0000 │
├─────┼─────┼─────┼──────────────┤
│ a_1 │ b_1 │ c_0 │   20000.0000 │
├─────┼─────┼─────┼──────────────┤
│ a_1 │ b_1 │ c_1 │     300.0000 │
├─────┼─────┼─────┼──────────────┤
│ a_1 │ b_1 │ c_2 │  100000.0000 │
╘═════╧═════╧═════╧══════════════╛
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# or with product method
In [28]: phi_new = phi.product(phi1, phi2)
# would produce a factor with phi_new = phi * phi1 * phi2

Gibbs distributions and Markov networks
In the previous section, we saw that we use factors to parameterize a Markov 
network, which is quite similar to CPDs. Hence, we may think that factors behave 
in the same way as the CPD. Marginalizing and normalizing it may represent the 
probability of a variable, but this intuition turns out to be wrong, as we will see in 
this section. A single factor is just one contribution to the overall joint probability 
distribution; to have a joint distribution over all the variables, we need the 
contributions from all the factors of the model. For the dinner example, let's consider 
the following factors to parameterize the network.

Factor over the variables A and B represented by ( )A,Bφ :

A B ( )A,Bφ

0a 0b 90

0a 1b 100

1a 0b 1

1a 1b 10

Factor over the variables B and C represented by ( )B,Cφ :

B C ( )B,Cφ

0b 0c 10

0b 1c 80

1b 0c 70

1b 1c 30
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Factor over variables C and D represented by ( )C,Dφ :

C D ( )C,Dφ

0c 0d 10

0c 1d 1

1c 0d 100

1c 1d 90

Factor over variables A and D represented by ( )D,Aφ :

D A ( )D,Aφ

0d 0a 80

0d 1a 60

1d 0a 20

1d 1a 10

Now, considering the preceding factors, let's try to calculate the probability of A by 
just considering the factor ( )A,Bφ . On normalizing and marginalizing the factor 
with respect to B, we get ( )0a 0.945P =  and ( )1a 0.055P = . Now, let's try to compute 
the probability by considering all the factors. To do this, we first need to calculate the 
factor product of these factors:

A B C D ( )A,B,C,Dφ 1/ Z ( )A,B,C,Dφ∗

0a 0b 0c 0d 38 10∗ 1.0360 10 4∗ −

0a 0b 0c 1d 30.2 10∗ 2.5901 10 6∗ −

0a 0b 1c 0d 364 10∗ 8.2883 10 4∗ −

0a 0b 1c 1d 316 10∗ 2.0720 10 4∗ −



Markov Network Fundamentals

[ 40 ]

A B C D ( )A,B,C,Dφ 1/ Z ( )A,B,C,Dφ∗

0a 1b 0c 0d 556 10∗ 7.2522 10 2∗ −

0a 1b 0c 1d 414 10∗ 1.8130 10 3∗ −

0a 1b 1c 0d 624 10∗ 3.1081 10 1∗ −

0a 1b 1c 1d 56 10∗ 7.7702 10 3∗ −

1a 0b 0c 0d 454 10∗ 6.9932 10 3∗ −

1a 0b 0c 1d 39 10∗ 1.1655 10 4∗ −

1a 0b 1c 0d 5432 10∗ 5.5946 10 1∗ −

1a 0b 1c 1d 472 10∗ 9.3243 10 3∗ −

1a 1b 0c 0d 442 10∗ 5.4392 10 3∗ −

1a 1b 0c 1d 37 10∗ 9.0653 10 4∗ −

1a 1b 1c 0d 518 10∗ 2.3310 10 2∗ −

1a 1b 1c 1d 43 10∗ 3.8851 10 4∗ −

Now, if we normalize and marginalize this factor product, we get ( )0 0.3940P a =  and 
( )1 0.6059P a = . Here, we see that there is a huge difference in the probability when we 

consider only a single factor as compared to when we consider all the factors. Hence, 
our intuition of factors behaving like CPDs is wrong.

Therefore, in a Markov network over a set of variables 1 2{ , ,..., }mX X X X=  having 
a set of factors 1 2{ , ,..., }nφ φ φΦ =  associated with it, we can compute the joint 
probability distribution over these variables as follows:

1 2
1( , ,..., )mP X X X
Z φ

φ
Φ

= ∏
ε

Here, Z is the partition function and 
1 2, ,..., nX X X

Z
φ

φ
Φ

= ∑ ∏
ε

.
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Also, a distribution Pφ  is called a Gibbs distribution parameterized by a set of factors 
( ) ( ) ( ){ }1 1 2 2, ,..., n nD D Dφ φ φΦ =  if it is defined as follows:

( ) ( ) ( ) ( )( )1 2, 3 1 1 2 2 3 3
1( , ,..., ) ...n n nP X X X X D D D D
Zφ φ φ φ φ= ∗ ∗ ∗ ∗

Here, ( ) ( ) ( ) ( )( )
1 2

1 1 2 2 3 3
, ,...,

...
n

n n
X X X

Z D D D Dφ φ φ φ= ∗ ∗ ∗ ∗∑  is a normalizing constant called  
the partition function.

To construct a Markov network, we need to associate the parameterization of a Gibbs 
distribution to the set of factors of an undirected graph structure. A factor with the X 
and Y scopes represents a direct relationship between them.

Let's see how we can represent a Markov model using pgmpy:

# First import MarkovModel class from pgmpy.models
In [1]: from pgmpy.models import MarkovModel
In [2]: model = MarkovModel([('A', 'B'), ('B', 'C')])
In [3]: model.add_node('D')
In [4]: model.add_edges_from([('C', 'D'), ('D', 'A')])

Now, let's try to define a few factors to associate with this model:

In [5]: from pgmpy.factors import Factor
In [6]: factor_a_b = Factor(variables=['A', 'B'],
                            cardinality=[2, 2],
                            value=[90, 100, 1, 10])
In [7]: factor_b_c = Factor(variables=['B', 'C'],
                            cardinality=[2, 2],
                            value=[10, 80, 70, 30])
In [8]: factor_c_d = Factor(variables=['C', 'D'],
                            cardinality=[2, 2],
                            value=[10, 1, 100, 90])
In [9]: factor_d_a = Factor(variables=['D', 'A'],
                            cardinality=[2, 2],
                            value=[80, 60, 20, 10])

We can associate the factors to the model using the add_factors method:

In [10]: model.add_factors(factor_a_b, factor_b_c,
                           factor_c_d, factor_d_a)
In [11]: model.get_factors()
Out[11]:
[<Factor representing phi(A:2, B:2) at 0x7f18504477b8>,
 <Factor representing phi(B:2, C:2) at 0x7f18504479b0>,
 <Factor representing phi(C:2, D:2) at 0x7f1850447f98>,
 <Factor representing phi(D:2, A:2) at 0x7f1850455358>]



Markov Network Fundamentals

[ 42 ]

The factor graph
The Markov network doesn't give a very clear picture of the Gibbs parameterization 
of the distribution because we can't conclude whether the factors in it involve the 
maximal cliques or subgraphs. To overcome this limitation of the Markov network, 
we require a representation that can show the parameterization explicitly. The factor 
graph is one such representation.

A factor graph is a bipartite graph, one disjoint set being variable nodes, representing 
the variables, and the other being factor nodes, representing factors. An edge 
between a variable node and a factor node denotes that the random variable belongs 
to the scope of the factor. Thus, a factor graph is parameterized by a set of factors, 
where each of them is associated with a factor node, whose scope is all sets of all the 
random variables that it is neighbor to.

Generally, all the variable nodes are represented by a circle and all the factor nodes 
are represented by a square. Here's an example:

Fig 2.3 Factor graph

In the preceding factor graph, there are three variable nodes A, B, and C and three factor 
nodes associated with three factors, namely ( )1 ,A Bφ , ( )2 ,B Cφ , and ( )3 ,C Aφ . This 
representation is more explicit than the Markov network (Fig 2.4 (a)). From the Markov 
network, without checking the factors, we can't know whether the factors involve 
maximal clique (A, B, C) or their subgraphs {(A, B), (B, C), (C, A)}. This information is 
explicitly specified in the factor graph.
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Fig 2.4 (a) Markov network of the corresponding factor graph in Fig 2.3

Fig 2.4 (b) Factor graph parameterized by factors involving maximal clique of the Markov network

In pgmpy, factor graphs can be created as follows:

# First import FactorGraph class from pgmpy.models
In [1]: from pgmpy.models import FactorGraph
In [2]: factor_graph = FactorGraph()

# Add nodes (both variable nodes and factor nodes) to the model
# as we did in previous other models
In [3]: factor_graph.add_nodes_from(['A', 'B', 'C', 'D',
                                     'phi1', 'phi2', 'phi3'])

# Add edges between all variable nodes and factor nodes
In [4]: factor_graph.add_edges_from(
                         [('A', 'phi1'), ('B', 'phi1'),
                          ('B', 'phi2'), ('C', 'phi2'),
                          ('C', 'phi3'), ('A', 'phi3')])

The FactorGraph class doesn't make any prior assumption about nodes; that is, it 
doesn't know which nodes are variable nodes and which nodes are factor nodes. It 
allows us to add edges between any nodes as long as they don't violate the bipartite 
nature of the factor graph. As soon as the bipartite property is violated by the 
addition of an edge, it raises the ValueError exception:

# We can also add factors into the model
In [5]: from pgmpy.factors import Factor
In [6]: import numpy as np
In [7]: phi1 = Factor(['A', 'B'], [2, 2], np.random.rand(4))
In [8]: phi2 = Factor(['B', 'C'], [2, 2], np.random.rand(4))
In [9]: phi3 = Factor(['C', 'A'], [2, 2], np.random.rand(4))
In [10]: factor_graph.add_factors(phi1, phi2, phi3)
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We can also convert a Markov model into a factor graph and vice versa:

In [11]: from pgmpy.models import MarkovModel
In [12]: mm = MarkovModel()
In [13]: mm.add_nodes_from(['A', 'B', 'C'])
In [14]: mm.add_edges_from([('A', 'B'), ('B', 'C'), ('C', 'A')])
In [15]: mm.add_factors(phi1, phi2, phi3)
In [16]: factor_graph_from_mm = mm.to_factor_graph()

# While converting a markov model into factor graph, factor nodes
# would be automatically added the factor nodes would be in the
# form of phi_node1_node2_...

In [17]: factor_graph_from_mm.nodes()
Out[17]: ['C', 'B', 'phi_A_B', 'phi_B_C', 'phi_C_A', 'C']
In [18]: factor_graph.edges()
Out[18]: [('phi_A_B', 'A'), ('phi_A_C', 'A'), ('B', 'phi_B_C'),
          ('B', 'phi_A_B'), ('C', 'phi_B_C'), ('C', 'phi_C_A')]

# FactorGraph to MarkovModel

In [19]: phi = Factor(['A', 'B', 'C'], [2, 2, 2], 
                         
np.random.rand(8))
In [20]: factor_graph = FactorGraph()
In [21]: factor_graph.add_nodes_from(['A', 'B', 'C', 'phi'])
In [22]: factor_graph.add_edges_from(

                    [('A', 'phi'), ('B', 'phi'), ('C', 'phi')])
In [23]: mm_from_factor_graph = factor_graph.to_markov_model()
In [24]: mm_from_factor_graph.add_factors(phi)
In [24]: mm_from_factor_graph.edges()
Out[24]: [('B', 'A'), ('C', 'B'), ('C', 'A')]

Independencies in Markov networks
In the previous chapter, we saw how a Bayesian network structure encodes 
independency conditions in it, and how observing variables affects the flow of 
influence in the network. Similarly, in the case of Markov networks, the graph 
structure encodes independency conditions. However, the flow of influence in a 
Markov network stops as soon as any node is observed in that trail. This is quite 
different from what we saw in the Bayesian network, where different structures 
responded differently to the observation of the nodes.
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To understand this more formally, let H be a Markov network structure and  
Z X⊆  be a set of observed variables. Then, the path 1 2 1... k kX X X X−  is active  
if and only if none of the iX  for { }1,2,..., 1,i k k−ε  are in Z.

In the case of Bayesian networks, we had the concept of local independencies, where 
a variable is independent of all its non-descendants, given given its parents. We also 
had global conditions which were implied by D-Separation. Similarly, in the case 
of Markov networks, the independence conditions that we discussed earlier are the 
global independencies in the network. Local independence conditions are a subset 
of global conditions, but local independencies are also very important because they 
allow us to focus on a much smaller part of the network.

There are two ways of looking at the local independencies in the case of a Markov 
network. One way is to be intuitive and think that if two nodes X and Y are directly 
connected, then there is no way of rendering them as independent. However, if they 
are not directly connected, there is always a way of rendering them conditionally 
independent of each other. One way to do this is by observing all the variables in the 
network, except for X and Y. If we have all the nodes observed in the network except 
X and Y, then there must be at least one observed node in the trail connecting the 
nodes X and Y, which will eventually lead X and Y to be independent of each other. 
This is known as pairwise independency. More formally, we can define pairwise 
independency in a Markov network H as follows:

{ }( ){ }( ) | ,pI H X Y X Yχ= ⊥ −

Another way of thinking about local independencies is to not let other nodes influence 
a given node, by observing all of its neighboring nodes. This set of neighboring nodes 
is known as the Markov blanket, and this type of independence in the network is 
known as local independency. More formally, this can be defined as follows:

( ) ( ) ( )( ){ }|l H HI H X X MB X MB Xχ= ⊥ − −

Like Bayesian networks, we also have the concept of I-Map in Markov models. For a 
probability distribution P and a Markov network structure H if ( ) ( )I H I P⊆ , we say 
that H is an I-Map of P.
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Let's check the local independencies in the network using pgmpy:

In [1]: from pgmpy.models import MarkovModel
In [2]: mm = MarkovModel()
In [3]: mm.add_nodes_from(

                   ['x1', 'x2', 'x3', 'x4', 'x5', 'x6', 'x7'])
In [4]: mm.add_edges_from(

                   [('x1', 'x3'), ('x1', 'x4'), ('x2', 'x4'),

                    ('x2', 'x5'), ('x3', 'x6'), ('x4', 'x6'),
                    ('x4', 'x7'), ('x5', 'x7')])
In [5]: mm.get_local_independencies()
Out[5]: 
(x3 _|_ x5, x4, x7, x2 | x6, x1)
(x4 _|_ x3, x5 | x6, x7, x1, x2)
(x1 _|_ x6, x7, x5, x2 | x3, x4)
(x5 _|_ x3, x4, x6, x1 | x7, x2)
(x7 _|_ x3, x6, x1, x2 | x5, x4)
(x2 _|_ x3, x6, x7, x1 | x5, x4)
(x6 _|_ x5, x7, x1, x2 | x3, x4)

We saw three different ways of defining independencies in Markov networks.  
While all of these are related, they are equivalent only for positive distributions. 
Non-positive distributions allow for deterministic dependencies between the 
variables, and such deterministic interactions can allow us to construct networks  
that are not I-maps of the distribution but local independencies hold for them.

Constructing graphs from distributions
To construct a Markov network from a distribution, the mere concept of I-Maps 
is not enough. As in the case of Bayesian networks, a fully connected graph has 
no independence conditions and, hence, it can be an I-Map of any probability 
distribution. Therefore, we introduce the concept of the minimal I-Map in Markov 
networks as well. To construct a minimal I-Map, we can use the local independency 
conditions that we defined in the previous section.

In the first approach, let's consider the case of pairwise independencies. According to 
pairwise independencies, if there is no edge between {X, Y}, then { }( )| ,X Y X Yχ⊥ − .  
Thus, at the very least, to guarantee that H is an I-map, we must add direct edges 
between all pairs of nodes X and Y, such that they are dependent even on observing  
all the other variables in the network.
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Similarly, we can get more information about the structure by using the local 
independencies conditions. For each variable X, we can find the minimal set of nodes. 
Observing these makes the variable independent of all the variables. Then, add an 
edge between the variable and all the nodes in the set. In this way, exploiting local 
independencies gives us a very basic methodology for constructing models from data. 
In later chapters, we will discuss more sophisticated methods to create models.

Bayesian and Markov networks
Until now, we have discussed two different models for representing graphical 
models. Each of these can represent independence constraints that the other cannot. 
In this section, we will look at the relationship between these two models.

Converting Bayesian models into Markov 
models
Both Bayesian models and Markov models parameterize a probability distribution 
using a graphical model. Further, these structures also encode the independencies 
among the random variable. So, when converting a Bayesian model into a Markov 
one, we have to look from the following two perspectives:

• From the perspective of parameterization, that is, representing the 
probability distribution of the Bayesian model BP  using a fully 
parameterized Markov model

• From the perspective of independencies, that is, representing the independence 
constraints encoded by the Bayesian model using the Markov model

From the first perspective, conversion of the Bayesian model into the Markov 
model is fairly simple. Let's begin by considering the case of a probability 
distribution 

BP , where B is a parameterized Bayesian network over a graph G. If 
we see the parameterization of the Bayesian network, we can also think of it as a 
parameterization of a Gibbs distribution. We can think of a CPD over a variable 

iX  
to be a factor with a scope { },i X iX Pa . This set of factors defines a Gibbs distribution 
with the partition function being equal to 1.



Markov Network Fundamentals

[ 48 ]

Looking from the second perspective, let's try to find out what kind of undirected 
graph would be an I-Map for this Gibbs distribution. To understand it more clearly, 
let's go back to our previous Bayesian network example and try to convert it into a 
Markov network:

Fig 2.5 Simple Bayesian model

Let's try to convert this Bayesian model into a Markov model simply by replacing 
directed edges with undirected ones and start by replacing the edges (A, J) and  
(R, J) with undirected edges. However, this representation has a problem. The 
Markov Blanket of node A would be J. Thus, this representation asserts that  
A would be independent of all the nodes in the model expect J, given J or specifically 

|A R J⊥ . However, the Bayesian Network asserts the exact opposite of this,  
that is, |A R J⊥ . Thus, it requires an additional undirected edge between A and R. 
Similarly, replacing directed edges with undirected edges and adding extra edges 
where required, we get the network in the following figure:
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Fig 2.6 Moral graph of Bayesian model represented in Fig 2.5

Hence, we can conclude that to convert a Bayesian model into a Markov model, we 
need to do the following:

• Replace all the directed edges between the nodes with undirected edges
• Add additional undirected edges between nodes that are parents of the node

This new structure created by replacing directed edges and adding new edges 
is known as the moral graph of the Bayesian network and is also known as the 
moralization of the network.

We can see that the moral graph H of a Bayesian model G loses some information 
regarding the independencies. For example, A R⊥  in the graph G, but not in H. 
However, ( ) ( )I H I G⊆ , so we can say that H is an I-Map for this Gibbs distribution. 
Note that moral graphs don't always lose information about the independencies. For 
example, if there had been an edge between A and R already, then no information 
regarding independencies would have been lost.

In pgmpy, a Bayesian model can be converted into a Markov model as follows:

In [1]: from pgmpy.models import BayesianModel
In [2]: from pgmpy.factors import TabularCPD

# Creating the above bayesian network
In [2]: model = BayesianModel()
In [3]: model.add_nodes_from(['Rain', 'TrafficJam'])
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In [4]: model.add_edge('Rain', 'TrafficJam')
In [5]: model.add_edge('Accident', 'TrafficJam')
In [6]: cpd_rain = TabularCPD('Rain', 2, [[0.4], [0.6]])
In [7]: cpd_accident = TabularCPD('Accident', 2, [[0.2], [0.8]])
In [8]: cpd_traffic_jam = TabularCPD(

                  'TrafficJam', 2,

                  [[0.9, 0.6, 0.7, 0.1],

                   [0.1, 0.4, 0.3, 0.9]],

                  evidence=['Rain', 'Accident'],

                  evidence_card=[2, 2])
In [9]: model.add_cpds(cpd_rain, cpd_accident, cpd_traffic_jam)
In [10]: model.add_node('LongQueues')
In [11]: model.add_edge('TrafficJam', 'LongQueues')
In [12]: cpd_long_queues = TabularCPD('LongQueues', 2,

                                         [[0.9, 0.2],

                                          [0.1, 0.8]], 
                                         evidence=['TrafficJam'],

                                         evidence_card=[2])
In [13]: model.add_cpds(cpd_long_queues)
In [14]: model.add_nodes_from(['GettingUpLate', 'LateForSchool'])
In [15]: model.add_edges_from([('GettingUpLate', 'LateForSchool'),

                               ('TrafficJam', 'LateForSchool')])
In [16]: cpd_getting_up_late = TabularCPD('GettingUpLate', 2,

                                          [[0.6], [0.4]])
In [17]: cpd_late_for_school = TabularCPD(

                         'LateForSchool', 2,

                         [[0.9, 0.45, 0.8, 0.1],

                          [0.1, 0.55, 0.2, 0.9]],

                         evidence=['GettingUpLate',TrafficJam'],

                         evidence_card=[2, 2])
In [18]: model.add_cpds(cpd_getting_up_late, cpd_late_for_school)

# Conversion from BayesianModel to MarkovModel is accomplished by

In [19]: mm = model.to_markov_model()
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In [20]: mm.edges()
Out[20]: 
[('TrafficJam', 'Accident'),
 ('TrafficJam', 'LongQueues'),
 ('TrafficJam', 'LateForSchool'),
 ('TrafficJam', 'Rain'),
 ('TrafficJam', 'GettingUpLate'),
 ('LateForSchool', 'GettingUpLate'),
 ('Accident', 'Rain')]

Converting Markov models into Bayesian 
models
The conversion of a Markov model into a Bayesian model is not as simple as the case 
of converting a Bayesian model into a Markov model.

Let's start with our simple Markov model example and try to convert it into a Bayesian 
model. In this section, we will be looking from the perspective of independencies, that 
is, finding a Bayesian model that is an I-Map of the corresponding Markov model:

Fig 2.7(a) Markov model

Fig 2.7(b) Bayesian model formed by changing the directed edges into undirected ones
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We can simply replace all the undirected edges in the Markov model (Fig 2.7(a)) 
with directed edges (Fig 2.7(b)). However, does this Bayesian model encode all the 
independencies of the corresponding Markov model? Before getting into this, let's 
take a more simple example of the Markov model formed by removing the node C:

Fig 2.8(a) Markov model formed by removing node C

Fig 2.8(b) Bayesian model formed by changing the directed edges into undirected ones

Fig 2.8(a) represents a Markov model formed by removing the node C. Fig 2.8(b) is 
formed just by converting the undirected edges into directed edges. The Markov 
model encodes the independence assertion that |B D A⊥ , which is also encoded in 
the corresponding Bayesian model. So, the Bayesian model formed is a perfect I-Map 
of the Markov model. Now, let's go back to our previous example and examine the 
independencies encoded in both, the Markov model and the Bayesian model formed 
simply by converting undirected edges into directed ones.

The Markov model H encodes | ,B D A C⊥ , but the corresponding Bayesian  
model G encodes |B D A⊥ , which is not true for H, where |B D A⊥ . So, for G to  
be an I-Map for H, there should be a directed edge between B and D. However, why 
did simply converting the undirected edges into direct edges not suffice as in the 
example in Fig 2.8?

We can see that the example in Fig 2.7 is a non-triangulated (non-chordal) graph.  
A triangulated or chordal graph is a graph in which each of its cycles of four or  
more vertices has a chord (an edge that is not part of the cycle but connects two 
vertices of the cycle). By simply converting edges of a non-triangulated graph into 
directed ones, we introduce immoralities. An immorality is a v-structure  
( X Z Y→ ← ), if there is no directed edge between X and Y. So why does the 
introduction of immorality pose an issue? To get the answer to this question, let's 
look at the example again. Before the introduction of immorality or conversion of 
edges into directed ones, we had |B D A⊥ , but after the addition of immorality,  
we had |B D A⊥ .
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So, we can conclude that the process of converting a Markov models to a Bayesian 
model requires us to add edges to the network to make it chordal. This process is 
known as triangulation.

In pgmpy, we can convert a Markov model into a Bayesian model in the following way:

In [1]: from pgmpy.models import MarkovModel
In [2]: from pgmpy.factors import Factor
In [3]: model = MarkovModel()

# Fig 2.7(a) represents the Markov model
In [4]: model.add_nodes_from(['A', 'B', 'C', 'D'])
In [5]: model.add_edges_from([('A', 'B'), ('B', 'C'), 
                              ('C', 'D'), ('D', 'A')])

# Adding some factors.
In [6]: phi_A_B = Factor(['A', 'B'], [2, 2], [1, 100, 100, 1])
In [7]: phi_B_C = Factor(['B', 'C'], [2, 2], [100, 1, 1, 100])
In [8]: phi_C_D = Factor(['C', 'D'], [2, 2], [1, 100, 100, 1])
In [9]: phi_D_A = Factor(['D', 'A'], [2, 2], [100, 1, 1, 100])
In [10]: model.add_factors(phi_A_B, phi_B_C, phi_C_D, phi_D_A)
In [11]: bayesian_model = model.to_bayesian_model()
In [12]: bayesian_model.edges()
Out[12]: [('D', 'C'), ('D', 'B'), ('D', 'A'), 
          ('B', 'C'), ('B', 'A')]

Chordal graphs
As we have seen, in the case of converting a Bayesian model into a Markov model, 
we lost some of the independence conditions. The same holds true in this case as 
well, and we can see from the example that we lose the following conditions:

• Statistical independence between parents of the same node in a Bayesian 
network is lost when it is converted into a Markov one due to the 
introduction of immorality

• Addition of extra edges to convert a Markov model into a Bayesian one leads 
to the loss of local independence information

We also see that for the perfect conversion of the model, we must have a chordal 
graph. The process of converting a non-chordal graph into a chordal one is called 
triangulation. A triangulated graph can be obtained from an undirected graph by 
adding links.
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In pgmpy, we can triangulate a graph as follows:

In [1]: from pgmpy.models import MarkovModel
In [2]: from pgmpy.factors import Factor
In [3]: import numpy as np
In [4]: model = MarkovModel()

# Fig 2.7(a) represents the MarkovModel
In [6]: model.add_nodes_from(['A', 'B', 'C', 'D'])
In [7]: model.add_edges_from(
                [('A', 'B'), ('B', 'C'), ('C', 'D'), ('D', 'A')])

# Adding some factors
In [8]: phi_A_B = Factor(['A', 'B'], [2, 2], [1, 100, 100, 1])
In [9]: phi_B_C = Factor(['B', 'C'], [2, 2], [100, 1, 1, 100])
In [10]: phi_C_D = Factor(['C', 'D'], [2, 2], [1, 100, 100, 1])
In [11]: phi_D_A = Factor(['D', 'A'], [2, 2], [100, 1, 1, 100])
In [12]: model.add_factors(phi_A_B, phi_B_C, phi_C_D, phi_D_A)
In [13]: chordal_graph = model.triangulate()

# Fig 2.9 represents the chordal graph created by triangulation
In [14]: chordal_graph.edges()
Out[14]: [('C', 'D'), ('C', 'B'), ('D', 'B'),
          ('D', A'), ('A, 'B')]

The following is the chordal graph formed by triangulating the Markov model:

Fig 2.9 Chordal graph
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There are six heuristics presented in Heuristic Algorithms for the Triangulation of Graphs 
by Andres Cano and Serafn Moral to add links in an undirected graph to triangulate 
it. The detailed explanation of these heuristics is beyond the scope of this book  
(for a detailed explanation, you can go through this paper). These heuristics are also 
implemented in pgmpy in the following way:

# For creating a chordal graph using first heuristic there are six
# heuristics that are implemented in pgmpy and can be used by
# passing the keyword argument heuristic as H1, H2, H3, H4, H5, H6
In [15]: chordal_graph = model.triangulate(heuristic='H1')

If no heuristics are provided, H6 must be used by default.

Summary
In this chapter, we saw how we are not able to use a Bayesian model to model a 
problem in some cases. In some of these problems, we can use an undirected graph 
to represent the relation between the variables. These undirected graphs, along 
with a set of factors representing interaction between these random variables, are 
known as Markov networks. We discussed the various independencies encoded by a 
Markov network: local, pairwise, and global. Also, we saw that in a Markov network, 
the influence stops flowing as soon as we observe any node in that trail, which 
is quite different from the case of a Bayesian network, where different network 
structures imply a different flow of influence. We also discussed the concepts of 
I-Maps and minimal I-Maps that helped us understand when and how to encode a 
joint probability distribution in a graph structure. We also discussed the relationship 
between a Bayesian network and a Markov network.

In these first two chapters, we mainly discussed the representation and various 
properties of Bayesian and Markov models. In the next chapter, we will discuss how 
to infer the probability values of the different variables when the model is conditioned 
over some other variables, which would be much like getting predictions for variables 
for new data points as we do in normal machine learning techniques.
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Inference – Asking  

Questions to Models

In the previous chapters, we looked at the different types of models and how to 
create models for our problems. We also saw how the probabilities of variables 
change when we change the probabilities of some other variables. In this chapter, we 
will be discussing the various algorithms that can be used to compute these changes 
in the probabilities. We will also see how to use these inference algorithms to predict 
the values of variables of new data points based on our model, which was trained 
using our previous data.

In this chapter, we will cover:

• Using inference to answer queries about the model
• Variable elimination
• Understanding the belief propagation algorithm using a clique tree
• MAP inference using variable elimination
• MAP inference using belief propagation
• Comparison between variable elimination and belief propagation

Inference
Inferring from a model is the same as finding the conditional probability distribution 
over some variables, that is, P Y E e| =( ) , where Y ⊆ χ  and E ⊂ χ . Also, if we 
think about predicting values for a new data point, we are basically trying to find 
the conditional probability of the unknown variable, given the observed values of 
other variables. These conditional distributions can easily be computed from the joint 
probability distribution of the variables, by marginalizing and reducing them over 
variables and states.
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Fig 3.1: The restaurant model

Let's consider the restaurant example once again, as shown in the preceding 
figure. We can think of various inference queries that we can try on the model. 
For example, we may want to find the probability of the quality of a restaurant 
being good, given that the location is good, the cost is high, and the number 
of people coming is also high, which would result in the probability query 
P Q good L= good,C high,N high= = =( )| . Also, if we think of a machine learning problem, 
where we want to predict the number of people coming to a restaurant given other 
variables, it would simply be an inference query over the model, and the state having 
higher probability would be the prediction by the model. Now, let's see how we can 
compute these conditional probabilities from the model.

From the product rule of probability, we know the following:

P Y | E = e P Y e
P e

( ) ( , )
( )

=
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So, to find each value of the distribution P(Y, e), we could simply do a summation of 
the joint probability distribution over the variables W Y E= − −χ :

( ) ( )
w

P y,e P y,e,w=∑

Now, to find P(e), we can simply do another summation over P y,e( ) , which we just 
computed:

( ) ( ),
y

P e P y e=∑

Using these values of P y,e( )  and P(e), we can easily find the value of P y e|( )  as 
follows:

P y e
P y e
P e

|
,( ) = ( )
( )

Performing a similar calculation for each state y  of the random variable Y, we can 
calculate the conditional distribution over Y, given E = e.

Complexity of inference
In the previous section, we saw how we can find the conditional distributions 
over variables when a joint distribution is given. However, computing the joint 
probability distribution will give us an exponentially large table, and avoiding these 
huge tables was the whole point of introducing probabilistic graphical models. 
We will be discussing the various algorithms that can help us avoid the complete 
probability distributions while computing the conditional distribution, but first,  
let's see what the complexity of computing these inferences is.

If we think about the worst case scenario, we cannot avoid the exponential size of 
the tables in graphical models, which makes inference an NP-hard problem, and 
unfortunately, even the approximate methods to compute conditional distributions 
are NP-hard. Proofs of these results are beyond the scope of this book.

However, these results are for the worst case scenario. In real life, we don't always 
have the worst case. So, let's discuss various algorithms for the inference.
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Variable elimination
Let's try to do some inference tasks over the restaurant network in Fig 3.1. Let's say 
we want to find P(C). We know the following from the chain rule of probability:

( ) ( ) ( )
,

|
l q

P C P C l,q P l,q=∑

Also, we know that the random variables L and Q are independent of each other if C 
is not observed. So, we can write the preceding equation as follows:

( ) ( ) ( ) ( )
,

|
l q

P C P C l,q P l P q=∑

Now, we can see that we know the probability values involved in the product for the 
computation of P(C). We have the values of P C l,q|( )  from the CPD of C, the values 
of P(l) from the CPD of L, and the values of P(q) from the CPD of Q. Summing up the 
product of these probabilities, we can easily find the probability of C.

We can also note that the computational cost for this computation would be 
, where Val X( )  represents the number of states of the 

variable X. We can see that in order to compute the probability of each state of C, 
we need to compute the product for each combination of states L and Q, and then 
add them together. This means that for each state of C, we have 2∗ ( )∗ ( )Val L Val P  
products and Val L Val Q( )∗ ( )( )−1  additions. Here, 2 appears in the number of 
products because there are two product operations in the equation. Also, we need to 
do this computation Val C( )  times for each state of C.

Now, let's take the example of another simple model A B C D→ → →  and try to 
find P(D). We can find P(D) simply as follows:

( ) ( ) ( ) ( ) ( )
, ,

| | |
a b c

P D P a P b a P c b P D c∑

However, we can see that the complexity of computing the values of P(D) is 
now , and for much more complex models, our 
complexity will be too high. Now, let's see how we can use the concept of dynamic 
programming to avoid computing the same values multiple times and to reduce our 
complexity. To see the scope of using dynamic programming in this problem, let's 
first simply unroll the summation and check what values we are computing. For 
simplicity, we will assume that each of the variables has only two states. Unrolling 
the summation, we get the following:
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P d 0( ) = = P a P b a P c b P d c0 0 0 0 0 0 0( ) ( ) ( ) ( ) +| | |

                       
P a P b a P c b P d c0 0 0 1 0 0 1( ) ( ) ( ) ( ) +| | |

                       
P a P b a P c b P d c0 1 0 0 1 0 0( ) ( ) ( ) ( ) +| | |

                       
P a P b a P c b P d c0 1 0 1 1 0 1( ) ( ) ( ) ( ) +| | |

                       
P a P b a P c b P d c1 0 1 0 0 0 0( ) ( ) ( ) ( ) +| | |

                       
P a P b a P c b P d c1 0 1 1 0 0 1( ) ( ) ( ) ( ) +| | |

                       
P a P b a P c b P d c1 1 1 0 1 0 0( ) ( ) ( ) ( ) +| | |

                       
P a P b a P c b P d c1 1 1 1 1 0 1( ) ( ) ( ) ( )| | |

      
P d1( ) = P a P b a P c b P d c0 0 0 0 0 1 0( ) ( ) ( ) ( ) +| | |

                       
P a P b a P c b P d c0 0 0 1 0 1 1( ) ( ) ( ) ( ) +| | |

                       
P a P b a P c b P d c0 1 0 0 1 1 0( ) ( ) ( ) ( ) +| | |

                       
P a P b a P c b P d c0 1 0 1 1 1 1( ) ( ) ( ) ( ) +| | |

                       
P a P b a P c b P d c1 0 1 0 0 1 0( ) ( ) ( ) ( ) +| | |

                       
P a P b a P c b P d c1 0 1 1 0 1 1( ) ( ) ( ) ( ) +| | |

                       
P a P b a P c b P d c1 1 1 0 1 1 0( ) ( ) ( ) ( ) +| | |

                       
P a P b a P c b P d c1 1 1 1 1 1 1( ) ( ) ( ) ( )| | |
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To calculate P(D), we must calculate P d 0( ) =  and P d1( ) =  separately. After 
unrolling the summations, we can see that we have many computations that 
we have been doing multiple times if we take the simple linear approach. In the 
preceding equations, we can see that we have computed P a P b a0 0 0( )∗ ( )|  four times, 
P a P b a0 1 0( )∗ ( )|  four times, and so on. Let's first group these computations together:

              
P d 0( ) =  

P a P b a P a P b a P c b P d c0 0 0 1 0 1 0 0 0 0( ) ( ) + ( ) ( ) ( ) ( ) +| | | |

                                
P a P b a P a P b a P c b P d c0 0 0 1 0 1 1 0 0 1( ) ( ) + ( ) ( ) ( ) ( ) +| | | |

                                
P a P b a P a P b a P c b P d c0 1 0 1 1 1 0 1 0 0( ) ( ) + ( ) ( ) ( ) ( ) +| | | |

                                
P a P b a P a P b a P c b P d c0 1 0 1 1 1 1 1 0 1( ) ( ) + ( ) ( ) ( ) ( )| | | |

              
P d1( ) =  

P a P b a P a P b a P c b P d c0 0 0 1 0 1 0 0 1 0( ) ( ) + ( ) ( ) ( ) ( ) +| | | |

                               
P a P b a P a P b a P c b P d c0 0 0 1 0 1 1 0 1 1( ) ( ) + ( ) ( ) ( ) ( ) +| | | |

                               
P a P b a P a P b a P c b P d c0 1 0 1 1 1 0 1 1 0( ) ( ) + ( ) ( ) ( ) ( ) +| | | |

                              
P a P b a P a P b a P c b P d c0 1 0 1 1 1 1 1 1 1( ) ( ) + ( ) ( )( ) ( ) ( )| | | |

Now, replace these with symbols that we will compute only once and use 
them everywhere. Replacing P a P b a P a P b a0 0 0 1 0 1( ) ( ) + ( )∗ ( )| |  with τ1 0b( )  and 
P a P b a P a P b a0 1 0 1 1 1( ) ( ) + ( )∗ ( )| |  with τ1 1b( ) , we get:

      
P d 0( ) =  

τ1
0 0 0 0 0b P c b P d c( ) ( ) ( ) +| |

                        
τ1

0 1 0 0 1b P c b P d c( ) ( ) ( ) +| |

                        
τ1

1 0 1 0 0b P c b P d c( ) ( ) ( ) +| |

                        
τ1

1 1 1 0 1b P c b P d c( ) ( ) ( )| |

      
P d1( ) =  

τ1
0 0 0 1 0b P c b P d c( ) ( ) ( ) +| |

                        
τ1

0 1 0 1 1b P c b P d c( ) ( ) ( ) +| |
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τ1

1 0 1 1 0b P c b P d c( ) ( ) ( ) +| |

                        
τ1

1 1 1 1 1b P c b P d c( ) ( ) ( ) +| |

Again, grouping common parts together, we get:

           
P d 0( ) =  

τ τ1
0 0 0

1
1 0 1 0 0b P c b b P c b P d c( ) ( ) + ( ) ( )( ) ( ) +| | |

                             
τ τ1

0 1 0
1

1 1 1 0 1b P c b b P c b P d c( ) ( ) + ( ) ( )( ) ( )| | |

           
P d1( ) =  

τ τ1
0 0 0

1
1 0 1 1 0b P c b b P c b P d c( ) ( ) + ( ) ( )( ) ( ) +| | |

                             
τ τ1

0 1 0
1

1 1 1 1 1b P c b b P c b P d c( ) ( ) + ( ) ( )( ) ( )| | |

Now, replacing τ τ1
0 0 0

1
1 0 1b P c b b P c b( )∗ ( ) + ( )∗ ( )| |  with τ 2 0c( )  and replacing 

τ τ1
0 1 0

1
1 1 1b P c b b P c b( )∗ ( ) + ( )∗ ( )| |  with τ 2 1c( ) , we get:

           
P d 0( ) =  

τ 2
0 0 0c P d c( ) ( ) +|

                             
τ 2

1 0 1c P d c( ) ( )|

            
P d1( ) =  

τ 2
0 1 0c P d c( ) ( ) +|

                             
τ 2

1 1 1c P d c( ) ( )|

Notice how, instead of doing a summation over the complete product of 
P a P b a P c b P d c( ) ( ) ( ) ( )| | |  here, we did the summation over parts of it:

( ) ( ) ( ) ( ) ( )| | |
a b c

P D P a P b a P c b P D c=∑∑∑

( ) ( ) ( ) ( ) ( )| | |
c b a

P D P D c P c b P a P b a=∑ ∑ ∑

Here, we have been able to push the summations inside the equation because not all 
the terms in the equation have all the variables. So, only the terms P(a) and P(b|a) 
depend on A. So we can simply sum them over the values of A.
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To make things clearer, let's see another run of variable elimination on the restaurant 
model:

Step Variable 
eliminated

Factors involved Intermediate 
factor

New factor

1 L φ φ φL L C Q L C N( ) ( ) ( ), , , , , , / ( )υ1 L C Q N, , , ( )1 , ,C Q Nτ

2 Q φ τQ C Q N( ) ( ), , ,1 / ( )υ2 C N Q, , τ 2 C N,( )

3 C τ 2 C N,( ) / ( )υ3 C N, τ3 N( )

4 N τ3 N( ) / ( )υ4 N τ θ4 ( )

This method helps us to significantly reduce the computation required to compute 
the probabilities. In this case, we just need to compute τ1 B( ) , which requires two 
multiplications and two additions, and τ 2 C( ) , which requires four multiplications 
and two additions. We can then compute P(D). Hence, we just need a total of 12 
computations to compute P(D). However, in the case of computing P(D) from the 
joint probability distribution, we require 16 * 3 = 48 multiplications and 14 additions. 
Hence, we see that using variable elimination brings about huge improvement in the 
complexity of making the inference.

Now, let's see how to make the inference using variable elimination with pgmpy:

In [1]: from pgmpy.models import BayesianModel
In [2]: from pgmpy.inference import VariableElimination
In [3]: from pgmpy.factors import TabularCPD

# Now first create the model.
In [3]: restaurant = BayesianModel(
                               [('location', 'cost'),
                                ('quality', 'cost'), 
                                ('cost', 'no_of_people'), 
                                ('location', 'no_of_people')])
In [4]: cpd_location = TabularCPD('location', 2, [[0.6, 0.4]])
In [5]: cpd_quality = TabularCPD('quality', 3, [[0.3, 0.5, 0.2]])
In [6]: cpd_cost = TabularCPD('cost', 2, 
                              [[0.8, 0.6, 0.1, 0.6, 0.6, 0.05], 
                               [0.2, 0.1, 0.9, 0.4, 0.4, 0.95]], 
                               ['location', 'quality'], [2, 3])
In [7]: cpd_no_of_people = TabularCPD(
                            'no_of_people', 2,
                            [[0.6, 0.8, 0.1, 0.6], 
                             [0.4, 0.2, 0.9, 0.4]],
                             ['cost', 'location'], [2, 2])
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In [8]: restaurant.add_cpds(cpd_location, cpd_quality, 
                            cpd_cost, cpd_no_of_people)

# Creating the inference object of the model
In [9]: restaurant_inference = VariableElimination(restaurant)

# Doing simple queries over one or multiple variables.
In [10]: restaurant_inference.query(variables=['location'])
Out[10]: {'location': <Factor representing phi(location:2) at 
                                                0x7fea25e02898>}
In [11]: restaurant_inference.query(
                         variables=['location', 'no_of_people'])
Out[11]: {'location': <Factor representing phi(location:2) at
                                                0x7fea25e02b00>, 
          'no_of_people': <Factor representing phi(no_of_people:2)  
                                             at 0x7fea25e026a0>}

# We can also specify the order in which the variables are to be 
# eliminated. If not specified pgmpy automatically computes the 
# best possible elimination order.
In [12]: restaurant_inference.query(variables=['no_of_people'],
               elimination_order=['location', 'cost',  'quality'])
Out[12]: {'no_of_people': <Factor representing phi(no_of_people:2) 
                                               at 0x7fea25e02160>

We saw the case of making an inference when no condition was given. Now,  
let's take a case where some evidence is given; let's say we know that the cost  
of the restaurant is high and we want to compute the probability of the number  
of people in the restaurant. Basically, we want to compute P N c| 1( ) . For this, we could 
simply use the probability theory and first compute P N c, 1( )  and then normalize this 
over N again to get P c1( )  and then compute P N c, 1( )  as:

P N c
P N c
P c

|
,1
1

1( ) = ( )
( )

Now, the question is, how do we compute P N c| 1( )? We first reduce all the factors 
involving C to c1  and then do our normal variable elimination.

In pgmpy, we can simply pass another argument to the query method for evidence. 
Let's see how to find P N c| 1( )  using pgmpy:

# If we have some evidence for the network we can simply pass it 
# as an argument to the query method in the form of 
# {variable: state}
In [13]: restaurant_inference.query(variables=['no_of_people'],
                                    evidence={'location': 1})
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Out[13]: {'no_of_people': <Factor representing phi(no_of_people:2) 
                                               at 0x7fea25e02588>}
In [14]: restaurant_inference.query(
                      variables=['no_of_people'], 
                      evidence={'location': 1, 'quality': 1})
Out[14]: {'no_of_people': <Factor representing phi(no_of_people:2) 
                                               at 0x7fea25e02d30>}
# In this case also we can simply pass the elimination order for 
# the variables.
In [15]:restaurant_inference.query(
                      variables=['no_of_people'],
                      evidence={'location': 1},
                      elimination_order=['quality', 'cost'])
Out[15]: {'no_of_people': <Factor representing phi(no_of_people:2) 
                                               at 0x7fea25e02eb8>}

Analysis of variable elimination
We have already seen that variable elimination is much more efficient for  
calculating probability distributions than normalizing and marginalizing the joint 
probability distribution. Now, let's do an exact analysis to find the complexity of 
variable elimination.

Let's start by putting the variable elimination algorithm in simple terms. In variable 
elimination, we start by choosing a variable 

iX , then we compute the factor product 
/υ j  for all the factors involving that variable, and then eliminate that variable by 

summing it up, resulting in a new factor τ i  whose scope is ( ){ }i iScope Xυ −/ .

Now, let's consider that we have a network with n variables and m factors. In the case 
of a Bayesian network, the number of CPDs will always be equal to the number of 
variables, therefore, m = n for a Bayesian network. However, in the case of a Markov 
network, the number of factors can be more than the number of variables in the network. 
For simplicity, let's assume that we will be eliminating all the variables in the network.

In variable elimination, we have been performing just two types of operations, 
multiplication and addition. So, to find the overall complexity, let's start by counting 
these operations. For the multiplication step, we multiply each of the initial m 
factors and the intermediately formed n factors exactly once. So, the total number of 
multiplication steps would be ( ) im n N+ , where 

iN  is the size of the intermediate 
factor /υ j . Also, let's define max i iN max N= . Therefore, ( ) ( )i maxm n N m n N+ ≤ +  
will always be true. Now, if we calculate the total number of addition operations, 
we will be iterating over each of the /υ j  once, resulting in a total of maxnN  addition 
operations. So, we see that the total number of operations for Variable Elimination 
comes out to be ( ) max maxm n N nN+ + . Hence, the complexity of the overall operation  
is ( )maxO mN , because n m≤ .
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Now, let's try to analyze the variable elimination algorithm using the graph 
structure. We can treat a Bayesian model as a Markov model having undirected 
edges between all the variables in each of the CPD defining the parameters of  
the network. Now, let's try to see what happens when we run variable elimination 
over this network. We choose any variable X and multiply all other factors  
involving that factor X, resulting in a factor /υ  with the scope X neigh X∪ ( ) .  
After this, we eliminate the variable X and have a resulting factor τ  with scope 
neigh X( )  = Y . Now, as we have a factor with scope Y, we need to have edges in the 
network between each of the variables in Y. So, we add extra edges to the network, 
which are known as fill edges. For the elimination of the next variable, we use this 
new network structure and perform similar operations on it.

Let's see an example on our late-for-school model showing the graph structure 
during the various steps of variable elimination:

Fig 3.2(a): Initial state of the network

Fig 3.2(b): After eliminating Traffic Accident (A)

Fig 3.2(c): After eliminating Heavy Rain (R)

Fig 3.2(d): After eliminating Traffic Jam (J)
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Fig 3.2(e): After eliminating Long Queues (Q)

Fig 3.2(f): After eliminating Getting Up Late (G)

An induced graph is also defined as the undirected graph constructed by the union 
of all the graphs formed in each step of variable elimination on the network.  
Fig 3.3 shows the induced graph for the preceding variable elimination:

Fig 3.3: The induced graph formed by running the preceding variable elimination
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We can also check the induced graph using pgmpy:

In [16]: induced_graph = restaurant_inference.induced_graph(
                 ['cost', 'location', 'no_of_people', 'quality'])
In [17]: induced_graph.nodes()
Out[17]: ['location', 'quality', 'cost', 'no_of_people']
In [18]: induced_graph.edges()
Out[18]: 
[('location', 'quality'), 
 ('location', 'cost'), 
 ('location', 'no_of_people'), 
 ('quality', 'cost'), 
 ('quality', 'no_of_people'), 
 ('cost', 'no_of_people')]

Finding elimination ordering
In variable elimination, the order in which we eliminate the variables has a huge 
impact on the computational cost of running the algorithm. Let's look at the difference 
in the elimination ordering on the late-for-school model. The steps of variable 
elimination with the elimination order A, G, J, L, Q, R are shown in the following table:

Step Variable 
eliminated

Factors involved Intermediate 
factors

New factor

1 A φ φA J A R( ) ( ), , , / ( )υ1 J A R, , τ1 J R,( )
2 G φ φG L J G( ) ( ), , , / ( )υ2 J L G, , τ 2 J L,( )
3 J φ τ τQ J J R J L, , , , ,( ) ( ) ( )1 2 / ( )υ3 Q,R L J, , τ3 Q,R L,( )
4 L τ3 Q,R L,( ) / ( )υ4 Q,R L, τ 4 Q,R( )
5 Q τ 4 Q,R( ) / ( )υ5 Q,R τ5 R( )
6 R φ τR R( ) ( ), 5 / ( )υ6 R τ θ6 ( )
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The steps of variable elimination with the elimination order R, Q, L, J, G, A are shown 
in the following table:

Step Variable 
eliminated

Factors involved Intermediate 
factors

New factor

1 R φ φR J A R( ) ( ), , , / ( )υ1 J A R, , ( ),i J Aτ

2 Q φ Q J,( ) / ( )υ2 Q J, τ 2 J( )
3 L φ L J G, ,( ) / ( )υ3 L J G, , τ3 J G,( )
4 J τ τ τ1 2 3J A J J G, , , ,( ) ( ) ( ) / ( )υ4 J A G, , τ 4 A G,( )
5 G φ τG A G( ) ( ), ,4 / ( )υ5 A G, τ5 A( )
6 A φ τA A( ) ( ), 5 / ( )υ6 A τ θ6 ( )

For every intermediate factor, we add filled edges between all the variables in their 
scope, so we can say that every intermediate factor introduces a clique in the induced 
graph. Hence, the scope of every intermediate factor generated during the variable 
elimination process is a clique in the induced graph. Also, notice that every maximal 
clique in the induced graph is the scope of some intermediate factor generated 
during the variable elimination process. Therefore, having a larger maximal clique 
in the induced graph also means having a larger intermediate factor, which means 
higher computation cost.

Let's see a few definitions related to induced graphs:

• Width: This is defined as the number of nodes in the largest clique of the 
graph minus 1

• Induced width: This is defined as the width of an induced graph over some 
network, given an elimination ordering

• Tree width: The tree width of a network is defined as its minimal induced 
width

We have seen how the computation complexity of the variable elimination operation 
relates to the choice of elimination order, and how this relates to the tree width of 
the induced graph. A smaller tree width ensures a better complexity compared to an 
elimination order with a higher tree width. So, our problem has now been reduced to 
selecting an elimination order that keeps the tree width minimal.
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Unfortunately, finding the elimination for the minimal tree width is NP -complete, so 
there is no easy way to find the complexity of the inference over a network by simply 
looking at the network structure. However, there are many other techniques that we 
can use to find good elimination orderings.

Using the chordal graph property of induced graphs
We define a graph as being chordal if it contains no cycle of length greater than three, 
and if there are no edges between two nonadjacent nodes of each cycle. In other 
words, every minimal cycle in a chordal graph is three in length.

Now, if you look carefully, you will see that every induced graph is a chordal graph. 
Also, the converse of this theorem holds, that every chordal graph on these variables 
corresponds to some elimination ordering. The proof of both of these theorems is 
beyond the scope of this book.

So, to find the elimination order, we use the maximum cardinality search algorithm. 
In this algorithm, we basically iterate χ  times, and in each iteration, we try to 
find the variable with the largest number of marked variables and then mark that 
variable. This results in elimination ordering.

Minimum fill/size/weight/search
Another approach to find elimination ordering is to take the greedy approach and, in 
each step, select a variable that seems to be the best option for that step. So, for each 
iteration, we compute a cost function to eliminate each of the nodes and select the 
node that results in the minimum cost. Some of the cost criteria are as follows:

• Min-neighbors: The cost of a node is defined by the number of neighbors it 
has in the graph.

• Min-weight: The cost of a node is the product of the cardinality of its neighbors.
• Min-fill: The cost of node elimination is the number of edges that need to be 

added to the graph for the elimination of that node.
• Weighted-min-fill: The cost of node elimination is the sum of the weights of 

the edges that need to be added to the graph for its elimination. The weight of 
an edge is defined as the product of the weights of the nodes between which  
it lies.

Here, we have seen two different approaches to finding good elimination ordering. 
The second heuristic approach of going the greedy way doesn't seem to be a very 
good approach to get globally optimized elimination ordering. However, it turns 
out that it gives very good results in most of the cases as compared to our maximum 
cardinality search algorithm.
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Belief propagation
In the previous section, we saw that the basic operation of the variable elimination 
algorithm is the manipulation of the factors. First, we create a factor /υ j  by 
multiplying existing factors. Then, we eliminate a variable in /υ j  to generate a new 
factor τ i , which is then used to create another factor. From a different perspective, we 
can say that a factor /υ j  is a data structure, which takes messages τ j  generated by the 
other factor /υ j , and generates a message /υ j  which is used by the other factor /υl .

Clique tree
Before we go into a detailed discussion of the belief propagation algorithm, let's 
discuss the graphical model that provides the basic framework for it, the clique tree, 
also known as the junction tree.

The clique tree (τ ) is an undirected graph over a set of factors Φ , where each node 
represents a cluster of random variables and the edges connect the clusters, whose 
scope has a nonempty intersection. Thus, each edge between a pair of clusters iC  
and jC  is associated with a sepset ,i j i jS C C⊆ ∩ . For each cluster iC , we also define 
the cluster potential /υ j , which is the factor representing all the variables present in 
it.

This can be generalized. Let's assume there is a variable X, such that 
iX Cε  and 

jX Cε . Then, X is also present in every cluster in the path between iC  and jC  in τ
. This is known as the running intersection property. We can see an example in the 
following figure:

Fig 3.4: A simple cluster tree with clusters C A B C1 ={ }, ,  and C C D2 ={ }, . The sepset  
associated with the edge is S C1 2, ={ } .
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In pgmpy, we can define a clique tree or junction tree in the following way:

# Firstly import JunctionTree class
In [1]: from pgmpy.models import JunctionTree
In [2]: junction_tree = JunctionTree() 

# Each node in the junction tree is a cluster of random variables
# represented as a tuple
In [3]: junction_tree.add_nodes_from([('A', 'B', 'C'), 
                                      ('C', 'D')])
In [4]: junction_tree.add_edge(('A', 'B', 'C'), ('C', 'D'))

In [5]: junction_tree.add_edge(('A', 'B', 'C'), ('D', 'E', 'F'))
        ValueError: No sepset found between these two edges.

As discussed previously, the junction tree contains 
undirected edges only between those clusters whose 
scope has a non empty intersection. So, if we try to add 
any edge between two nodes whose scope has an empty 
intersection, it will raise ValueError.

Constructing a clique tree
In the previous section on variable elimination, we saw that an induced graph 
created by variable elimination is a chordal graph. The converse of it also holds true; 
that is, any chordal graph can be used as a basis for inference.

We previously discussed chordal graphs, triangulation techniques (the process 
of constructing a chordal graph that incorporates an existing graph), and their 
implementation in pgmpy. To construct a clique tree from the chordal graph, we need 
to find the maximal cliques in it. There are multiple ways of doing this. One of the 
simplest methods is the maximum cardinality search (which we discussed in the 
previous section) to obtain maximal cliques.

Then, these maximal cliques are assigned as nodes in the clique tree. Finally, to 
determine the edges of the clique tree, we use the maximum spanning tree algorithm. 
We build an undirected graph whose nodes are maximal cliques in H , where every 
pair of nodes iC , jC  is connected by an edge whose weight is i jC C∩ . Then, by 
applying the maximum spanning tree algorithm, we find a tree in which the weight 
of edges is at maximum.
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The cluster potential for each cluster in the clique tree can be computed as the 
product of the factors associated with each node of the cluster. For example, in  
the following figure, /υ1  (the cluster potential associated with cluster (A, B, C)  
is computed as the product of P(A), P(C), and P B A,C|( ) . To compute /υ2  (the  
cluster potential associated with (B, D, E), we use P E B,D|( ) , P(B), and P(D). P(B)  
is computed by marginalizing P B A,C|( )  with respect to A and C.

Fig 3.5: The cluster potential of the clusters present in the clique tree

These steps can be summarized as follows:

1. Triangulate the graph G over factor Φ  to create a chordal graph HΦ
.

2. Find the maximal cliques in HΦ
 and assign them as nodes to an  

undirected graph.
3. Assign weights to the edges between two nodes of the undirected graph as 

the numbers of elements in the sepset of the two nodes.
4. Construct the clique tree using the maximum spanning tree algorithm.
5. Compute the cluster potential for each cluster as the product of factors 

associated with the nodes present in the cluster.

In pgmpy, each graphical model class has a method called to_junction_tree(), 
which creates a clique tree (or junction tree) corresponding to the graphical model. 
Here's an example:

In [1]: from pgmpy.models import BayesianModel, MarkovModel
In [2]: from pgmpy.factors import TabularCPD, Factor

# Create a bayesian model as we did in the previous chapters
In [3]: model = BayesianModel(
                      [('rain', 'traffic_jam'),
                       ('accident', 'traffic_jam'),
                       ('traffic_jam', 'long_queues'), 
                       ('traffic_jam', 'late_for_school'),
                       ('getting_up_late', 'late_for_school')])
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In [4]: cpd_rain = TabularCPD('rain', 2, [[0.4], [0.6]])
In [5]: cpd_accident = TabularCPD('accident', 2, [[0.2], [0.8]])
In [6]: cpd_traffic_jam = TabularCPD(
                            'traffic_jam', 2,
                            [[0.9, 0.6, 0.7, 0.1], 
                            [0.1, 0.4, 0.3, 0.9]],                                                                        
                            evidence=['rain', 'accident'],
                            evidence_card=[2, 2])
In [7]: cpd_getting_up_late = TabularCPD('getting_up_late', 2,
                                         [[0.6], [0.4]])
In [8]: cpd_late_for_school = TabularCPD(
                            'late_for_school', 2,                                                             
                            [[0.9, 0.45, 0.8, 0.1],                                             
                            [0.1, 0.55, 0.2, 0.9]],
                            evidence=['getting_up_late',                       
                                      'traffic_jam'],
                            evidence_card=[2, 2])
In [9]: cpd_long_queues = TabularCPD('long_queues', 2,                          
                                     [[0.9, 0.2],
                                      [0.1, 0.8]],
                                     evidence=['traffic_jam'],
                                     evidence_card=[2])
In [10]: model.add_cpds(cpd_rain, cpd_accident, 
                        cpd_traffic_jam, cpd_getting_up_late, 
                        cpd_late_for_school, cpd_long_queues)
In [11]: junction_tree_bm = model.to_junction_tree() 
In [12]: type(junction_tree_bm)
Out[12]: pgmpy.models.JunctionTree.JunctionTree

In [13]: junction_tree_bm.nodes()
Out[13]:
[('traffic_jam', 'getting_up_late', 'late_for_school'),
 ('traffic_jam', 'rain', 'accident'),
 ('traffic_jam', 'long_queues')]

In [14]: junction_tree_bm.edges()
Out[14]: 
[(('traffic_jam', 'long_queues'),
  ('traffic_jam', 'late_for_school', 'getting_up_late')),
 (('traffic_jam', 'long_queues'), ('traffic_jam', 'rain', 
'accident'))]
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The to_junction_tree() method is available in 
FactorGraph, MarkovModel classes as well.

Message passing
Let's go back to the previous example of the Bayesian network for the late- for 
school- example:

Fig 3.6: Bayesian network for a student being late for school.

In the previous section, we saw how to construct a clique tree for this Bayesian 
network. The following figure shows the clique tree for this network:

Fig 3.7: Clique tree constructed from the Bayesian network presented in Fig 3.3
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As we discussed earlier, in the belief propagation algorithm, we would be 
considering factor /υ j  to be a computational data structure that would take a 
message τ j i→  generated from a factor /υ j , and produce τ i k→ , which can be further 
passed on to another factor /υk , and so on.

Let's go into the details of what each message term (τ j  and /υ ) means. Let's begin 
with a very simple example of finding the probability of being late for school (L). To 
compute the probability of L, we need to eliminate all the random variables, such as 
accident (A), rain (R), traffic jam (J), getting up late (G), and long queues (Q). We can 
see that variables A and R are present only in cluster C1  and Q is present only in C3 , 
but J is present in all three clusters, namely C1 , C2 , and C3 . So, both A and R can be 
eliminated from C1  by just marginalizing /υ1  with respect to A and R. Similarly, we 
could eliminate Q from /υ3 . However, to eliminate J, we can't just eliminate it from 
C1 , C2 , or /υ3  alone. Instead, we need contributions from all three.

Eliminating the random variables A and R by marginalizing the cluster potential /υ1  
corresponding to C1 , we get the following:

( ) ( )1 2 1 , ,
A R

J A R Jτ υ→ = /∑∑

Similarly, marginalizing the cluster potential /υ3  corresponding to C3  with respect to 
Q, we get the following:

( ) ( )3 2 3 ,
Q

J J Qτ υ→ = /∑

Now, to eliminate J and G, we must use τ1 2→ ( )J , ( )3 2 Jτ → , and / ( )υ2 J L G, , . 
Eliminating J and G, we get the following:

( ) ( ) ( ) ( )1 2 3 2 2 , ,
G J

L J J J L Gφ τ τ υ→ →= /∑∑

From the perspective of message passing, we can see that /υ1  produces an output 
message τ1 2→ . Similarly, /υ3  produces a message τ1 2→ . These messages are then 
used as input messages for /υ2  to compute the belief for a cluster C2 . Belief for a 
cluster iC  is defined as the product of the cluster potential /υ j  with all the incoming 
messages to that cluster. Thus:

β τ τ υ2 1 2 3 2 2J L G J J J L G, , , ,( ) = ( ) ( ) / ( )→ →
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So, we can re-frame the following equation:

( ) ( ) ( ) ( )1 2 3 2 2 , ,
G J

L J J J L Gφ τ τ υ→ →= /∑∑

It can be re-framed as follows:

( ) ( )2 , ,
G J

L J L Gφ β=∑∑

Fig 3.8 shows message propagation from clusters C1  and C3  to cluster C2 :

Fig 3.8: Message propagation from clusters C1  and C3  to cluster C2 :

Now, let's consider another example, where we compute the probability of long 
queues (Q). We have to eliminate all the other random variables, except Q. Using the 
same approach as discussed earlier, first marginalize /υ1  with respect to A and R, and 
compute τ1  as follows:

( ) ( )1 2 1 , ,
A R

J A R Jτ υ→ = /∑∑

As discussed earlier, to eliminate the variable J, we need contributions from C1 , C2
, and C3 , so we can't simply eliminate J from /υ2 . The other two random variables L 
and G are only present in C2 , so we can easily eliminate them from C2 . However, 
to eliminate L and G from C2 , we can't simply marginalize /υ2 . We have to consider 
the contribution of τ1 2→  (the outgoing message from C1 ) as well, because J was 
present in both the clusters C1  and C2 . Thus, eliminating L and G would create τ 2  
as follows:

( ) ( )2 3 1 2 2 , ,
L G

J J L Gτ τ υ→ →= /∑∑
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Finally, we can eliminate J by marginalizing the following belief β3  of C3 :

β υ τ3 3 2 3J Q J Q J, ,( ) = / ( ) ( )→

We can eliminate it as follows:

( ) ( )3 ,
J

Q J Qφ β=∑

Fig 3.9 shows a message passing from C1  to C2  and C2  to C3 :

Fig 3.9: Message passing from C1  to C2  and C2  to C3

In the previous examples, we saw how to perform variable elimination in a clique 
tree. This algorithm can be stated in a more generalized form. We saw that variable 
elimination in a clique tree induces a directed flow of messages between the clusters 
present in it, with all the messages directed towards a single cluster, where the final 
computation is to be done. This final cluster can be considered as the root. In our first 
example, the root was C2 , while in the second example, it was C3 . The notions of 
directionality and root also create the notions of upstream and downstream. If 

iC  is 
on the path from jC  to the root, then we can say that iC  is upstream from jC , and 
jC  is downstream from 

iC :

Fig 3.10: 
iC  is upstream from jC  and jC  is downstream from 

iC
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We also saw in the second example that C2  was not able to send messages to C3  
until it received the message from C1 , as the generation of τ 2 3→  also depends on 
τ1 2→ . This introduces the notion of a ready cluster. A cluster is said to be ready to 
transmit messages to its upstream cliques if it has received all the incoming messages 
from its downstream cliques.

The message C3  from the cluster j to the cluster i can be defined as the factor formed 
by the following sum product message passing computation:

( ) { },j i j

j i j k j
C S k Neighbor j i

τ υ τ→ →
− −

= /∑ ∏
ε

We can now define the terms belief β1  of a cluster iC . It is defined as the product of 
all the incoming messages τ k i→  from its neighbors with its own cluster potential:

( )
i i k i

k Neighbor i
β υ τ →= / ∏

ε

Here, j is the upstream from i.

All these discussions for running the algorithm can be summarized in the  
following steps:

1. Identify the root (this is the cluster where the final computation is to be made).
2. Start with the leaf nodes of the tree. The output message of these nodes can 

be computed by marginalizing its belief. The belief for the leaf node would 
be its cluster potential as there would be no incoming message.

3. As and when the other clusters of the clique tree become ready, compute the 
outgoing message and propagate them upstream.

4. Repeat step 3 until the root node has received all the incoming messages.

Clique tree calibration
In the previous section, we discussed how to compute the probability of any variable 
using belief propagation. Now, let's look at the broader picture. What if we wanted 
to compute the probability of more than one random variable? For example, say 
we want to know the probability of long queues as well as a traffic jam. One naive 
solution would be to do a belief propagation in the clique tree by considering each 
cluster as a root. However, can we do better?
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Consider the previous two examples we have discussed. The first one had C2  as the 
root, while the other had C3 . We saw that in both cases, message computed from the 
cluster C1  to the cluster C2  (that is τ1 2→ ) is the same, irrespective of the root node. 
Generalizing this, we can conclude that the message τ j i→  from the cluster jC  to the 
cluster iC  will be the same as long as the root is on the iC  side and  
vice versa. Thus, for a given edge in the clique tree between two clusters 

iC  and jC , 
we have only two messages to compute, depending on the directionality of the edges 
(τ i j→  and τ j i→ ). For a given clique tree with c clusters, we have c −1edges between 
these clusters. Thus, we only need to compute 2 1c −( )  messages.

As we have seen in the previous section, a cluster can propagate a message upstream 
as soon as it is ready, that is, when it has received all the incoming messages from 
downstream. So, we can compute both messages for each edge asynchronously. 
This can be done in two phases, one being an upward pass and the other being a 
downward pass. In the upward pass (Fig 3.11), we consider a cluster as a root and 
send all the messages to the root. Once the root has all the messages, we can compute 
its belief. For the downward pass (Fig 3.12), we can compute appropriate messages 
from the root to its children using its belief. This phase will continue until there is 
no message to be transmitted, that is, until we have reached the leaf nodes. This is 
shown in Fig 3.11:

Fig 3.11: Upward pass

Fig 3.11 shows an upward pass where cluster {E, F, G} is considered as the root node. 
All the messages from the other nodes are transmitted towards it.
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The following figure shows a downward pass where the appropriate message  
from the root is transmitted to all the children. This will continue until all the  
leaves are reached:

Fig 3.12: Downward pass

When both, the upward pass and the downward pass are completed, all the adjacent 
clusters in the clique tree are said to be calibrated. Two adjacent clusters i and j are 
said to be calibrated when the following condition is satisfied:

, ,i i j j i j

i j
C S C S

β β
− −

=∑ ∑

In a broader sense, it can be said that the clique tree is calibrated. When a clique tree is 
calibrated, we have two types of beliefs, the first being cluster beliefs and the second 
being sepset beliefs. The sepset belief for a sepset ,i jS  can be defined as follows:

( )
, ,

, ,
i i j j i j

i j i j i j
C S C S

Sµ β β
− −

= =∑ ∑

Message passing with division
Until now, we have viewed message passing in the clique tree from the perspective 
of variable elimination. In this section, we will see the implementation of message 
passing from a different perspective, that is, from the perspective of clique beliefs 
and sepset beliefs. Before we go into details of the algorithm, let's discuss another 
important operation on the factor called factor division.
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Factor division
A factor division between two factors φ1 X Y,( )  and φ2 Y( ) , where both X and Y are 
disjoint sets, is defined as follows:

/ ( ) = ( )
( )

υ
φ
φ

X Y
X Y
Y

,
,1

2

Here, we define 
0
0

0= . This operation is similar to the factor product, except that we 
divide instead of multiplying. Further, unlike the factor product, we can't divide 
factors not having any common variables in their scope. For example, consider the 
following two factors:

a b Φ1 a,b( )

a0 b0 0

a0 b1 1

a0 b2 2

a1 b0 3

a1 b1 4

a1 b2 5

b Φ2 b( )

b0 0

b1 1

b2 2
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Dividing Φ1 a,b( )  by Φ2 b( ) , we get the following:

a b Ψ a,b( )

a0 b0
0

a0 b1
1

a0 b2
1

a1 b0
0

a1 b1
4

a1 b2
2.5

In pgmpy, factor division can implemented as follows:

In [1]: from pgmpy.factors import Factor
In [2]: phi1 = Factor(['a', 'b'], [2, 3], range(6))
In [3]: phi2 = Factor(['b'], [3], range(3))
In [4]: psi = phi1 / phi2
In [5]: print(psi)
╒═════╤═════╤════════════╕
│ a   │ b   │   phi(a,b) │
╞═════╪═════╪════════════╡
│ a_0 │ b_0 │     0.0000 │
├─────┼─────┼────────────┤
│ a_0 │ b_1 │     1.0000 │
├─────┼─────┼────────────┤
│ a_0 │ b_2 │     1.0000 │
├─────┼─────┼────────────┤
│ a_1 │ b_0 │     0.0000 │
├─────┼─────┼────────────┤
│ a_1 │ b_1 │     4.0000 │
├─────┼─────┼────────────┤
│ a_1 │ b_2 │     2.5000 │
╘═════╧═════╧════════════╛
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Let's go back to our original discussion regarding message passing using division. As 
we saw earlier, for any edge between clusters iC  and jC , we need to compute two 
messages τ i j→  and τ j i→ . Let's assume that the first message was passed from 

iC  to 

jC , that is, iC . So, a return message from jC  to iC  would only be passed when jC  
has received all the messages from its neighbors.

Once jC  has received all the messages from its neighbors, we can compute its belief 
β j  as follows:

( )
j j k j

k Neighbor j
β υ τ →= / ∏

ε

In the previous section, we also saw that the message from jC  to 
iC  can be 

computed as follows:

( ) { },j i j

j i j k j
C S k Neighbor j i

τ υ τ→ →
− −

= /∑ ∏
ε

From the preceding mathematical formulation, we can deduce that the belief of jC , 
that is, β j , can't be used to compute the message from jC  to iC  as it would already 
include the message from iC  to jC  in it:

( ) { }
j i j j k j

k Neighbor j i
β τ υ τ→ →

−

= / ∏
ε

That is:

j i j j iβ τ τ→ →=

Thus, from the preceding equation, we can conclude that the message from jC  to 
iC  can be computed by simply dividing the final belief of jC , that is, β j , with the 

message from iC  to jC , that is, τ i j→ :

j
j i

i j

β
τ

τ→
→

=
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Finally, the message passing algorithm using this process can be summarized  
as follows:

1. For each cluster iC , initialize the initial cluster belief β1  as its cluster 
potential /υ j  and sepset potential between adjacent clusters iC  and jC ,  
that is, ,i jµ  as 1.

2. In each iteration, the cluster belief β1  is updated by multiplying it with the 
message from its neighbors, and the sepset potential i j−  is used to store the 
previous message passed along the edge ( i j− ), irrespective of the direction 
of the message.

3. Whenever a new message is passed along an edge, it is divided by the  
old message to ensure that we don't count this message twice (as we 
discussed earlier).
Steps 2 and 3 can formally be stated in the following way for each iteration:

,i i j

i j i
C S

σ β→
−

= ∑

4. Here, we marginalize the belief to get the message passed. However, as we 
discussed earlier, this message will include a message from jC  to iC  in it, so 
divide it by the previous message stored in i j− :

,

i j
i j

i j

σ
τ

µ
→

→ =

5. Update the belief by multiplying it with the message from its neighbors:

.j j i jβ β τ →←

6. Update the sepset belief:

,i j i jµ σ →←

7. Repeat steps 2 and 3 until the tree is calibrated for each adjacent edge ( i j− ):

( )
, ,

, ,
i i j j i j

i j i j i j
C S C S

Sµ β β
− −

= =∑ ∑
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As this algorithm updates the belief of a cluster using the beliefs of its neighbors,  
we call it the belief update message passing algorithm. It is also known as the 
Lauritzen-Spiegelhalter algorithm.

In pgmpy, this can be implemented as follows:

In [1]: from pgmpy.models import BayesianModel
In [2]: from pgmpy.factors import TabularCPD, Factor
In [3]: from pgmpy.inference import BeliefPropagation

# Create a bayesian model as we did in the previous chapters
In [4]: model = BayesianModel(
                      [('rain', 'traffic_jam'), 
                       ('accident', 'traffic_jam'),
                       ('traffic_jam', 'long_queues'), 
                       ('traffic_jam', 'late_for_school'),
                       ('getting_up_late', 'late_for_school')])

In [5]: cpd_rain = TabularCPD('rain', 2, [[0.4], [0.6]])
In [6]: cpd_accident = TabularCPD('accident', 2, [[0.2], [0.8]])
In [7]: cpd_traffic_jam = TabularCPD('traffic_jam', 2,
                                     [[0.9, 0.6, 0.7, 0.1],
                                      [0.1, 0.4, 0.3, 0.9]],                                                             
                                     evidence=['rain',
                                               'accident'],
                                     evidence_card=[2, 2])
In [8]: cpd_getting_up_late = TabularCPD('getting_up_late', 2,
                                         [[0.6], [0.4]])
In [9]: cpd_late_for_school = TabularCPD(
                         'late_for_school', 2,
                         [[0.9, 0.45, 0.8, 0.1], 
                          [0.1, 0.55, 0.2, 0.9]],
                         evidence=['getting_up_late','traffic_jam'],
                         evidence_card=[2, 2])
In [10]: cpd_long_queues = TabularCPD('long_queues', 2,
                                      [[0.9, 0.2], 
                                      [0.1, 0.8]],
                                      evidence=['traffic_jam'],
                                      evidence_card=[2])

In [11]: model.add_cpds(cpd_rain, cpd_accident, 
                        cpd_traffic_jam, cpd_getting_up_late,  
                        cpd_late_for_school, cpd_long_queues)
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In [12]: belief_propagation = BeliefPropagation(model)

# To calibrate the clique tree, use calibrate() method
In [13]: belief_propagation.calibrate()

# To get cluster (or clique) beliefs use the corresponding getters
In [14]: belief_propagation.get_clique_beliefs()
Out[14]:
{('traffic_jam', 'late_for_school', 'getting_up_late'): <Factor 
representing phi(getting_up_late:2, late_for_school:2, traffic_jam:2) 
at 0x7f565ee0db38>,
 ('traffic_jam', 'long_queues'): <Factor representing phi(long_
queues:2, traffic_jam:2) at 0x7f565ee0dc88>,
 ('traffic_jam', 'rain', 'accident'): <Factor representing phi(rain:2, 
accident:2, traffic_jam:2) at 0x7f565ee0d4a8>}

# To get the sepset beliefs use the corresponding getters 
In [15]: belief_propagation.get_sepset_beliefs()
Out[15]: {frozenset({('traffic_jam', 'long_queues'),
                    ('traffic_jam', 'rain', 'accident')}): <Factor 
representing phi(traffic_jam:2) at 0x7f565ee0def0>,
         frozenset({('traffic_jam', 'late_for_school', 
'getting_up_late'),
                   ('traffic_jam', 'long_queues')}): <Factor 
representing phi(traffic_jam:2) at 0x7f565ee0dc18>}

Querying variables that are not in the same cluster
In the previous section, we saw how to compute the probability of variables present 
in the same cluster. Now, let's consider a situation where we want to compute the 
probability of both being late for school (L) and long queues (Q). These two variables 
are not present in the same cluster. So, to compute their probabilities, one naive 
approach would be to force our clique tree to have these two variables in the same 
cluster. However, this clique tree is not the optimal one, hence it would negate all 
the advantages of the belief propagation algorithm. The other approach is to perform 
variable elimination over the calibrated clique tree.
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The algorithm for performing queries of variables not present in same cluster can be 
summarized as follows:

1. Select a subtree *τ  of the calibrated clique tree τ , such that the query 
variable [ ]*Y scope τ⊆ . Let Φ  be a set of factors on which variable 
elimination is to be performed. Select a cluster of the clique tree *τ  as the 
root node and add its belief to Φ  for each node in the clique tree Φ  except 
the root node.

( )
i

iParent i
βφ

µ
=

2. Add it to Φ . Let Z be a random set of random variables present in Φ , except 
for the query variables. Perform variable elimination on the set of factors Φ  
with respect to the variables Z.

In pgmpy, this can be implemented as follows:

In [15]: belief_propagation.query(
                         variables=['no_of_people'],                
                         evidence={'location': 1, 'quality': 1})
Out[15]: {'no_of_people': <Factor representing phi(no_of_people:2)
                                               at 0x7f565ee0def0>

MAP inference
Until now, we have been doing conditional probability queries only on the model. 
However, sometimes, rather than knowing the probability of some given states of 
variables, we might be interested in finding the states of the variables corresponding 
to the maximum probability in the joint distribution. This type of problem often 
arises when we want to predict the states of variables in our model, which is our 
general machine learning problem. So, let's take the example of our restaurant 
model. Let's assume that for some restaurant we know of, the quality is good, the 
cost is low, and the location is good, and we want to predict the number of people 
coming to the restaurant. In this case, rather than querying for the probabilities of 
states of the number of people, we would like to query for the state that has the 
highest probability, given that the quality is good, the cost is low, and the location is 
good. Similarly, in the case of speech recognition, given a signal, we are interested in 
finding the most likely utterance rather than the probability of individual phonemes.
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Putting the MAP problem more formally, we are given a distribution ( )Pφ χ   
defined by a set Φ  and an unnormalized ( )Pφ χ% , and we want to find an assignment 
ξ  whose probability is at maximum:

( )map argmax Pξξ χΦ=
 

mapξ  
( )1argmax P

Zξ χΦ= %

In the earlier equation, we used the unnormalized distribution to compute mapξ  as 
it helps us avoid computing the full distribution, because computing the partition 
function Z requires all the values of the distribution. Overall, the MAP problem is to 
find the assignment ξ  for which ( )Pφ χ%  is at maximum.

A number of algorithms have been proposed to find the most likely assignment. 
Most of these use local maximum assignments and graph structures to find the 
global maximum likely assignment.

We define the max-marginal of a function f relative to a set of variables Y as follows:

( )
( )

( )maxf Y y
MaxMarg y f

ξ
ξ

=
=

In simple words, ( )PMaxMarg Y
Φ
%

 returns the unnormalized probability value of the 
most likely assignment in ( )P YΦ

% . Most of the algorithms work on first computing 
this set of local max-marginals, that is ( ){ }f i iMaxMarg X x χε , and then use this to 
compute the global maximum assignment, as we will see in the next sections.

MAP using variable elimination
Let's start with a very basic example of a network A -> B, as shown in the  
following figure:

Fig 3.13: Basic Bayesian network with two variables
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For MAP, we want to compute the following:

( )
,

max ,
a b
P a b  = ( ) ( )

,
max |
a b
P a P b a  ( ) ( )maxmax |

a b
P a P b a=

If we consider any particular assignment a for the variable A, we have the following:

( ) ( ) ( )
,

max , max |
a b b
P a b P a P b a=

So, for any given assignment of A, we have to select the assignment of B for which 
P(b|a) is at maximum. We also have to select the maximum assignment of B as any 
given assignment of A doesn't guarantee that it would be the global maximum. 
Therefore, we need to check the values for each assignment of A.

Now, let's try to find the MAP assignment for the network in the Fig 3.13. Assuming 
the assignment from A to a0 , let's define ( ) ( )0 0max |

b
a P b aφ =  0.8=  and similarly, 

( ) ( )1 1max | 0.56
b

a P b aφ = = . Now, let's compute the max-marginal over A:

( ) ( )max
a
P a aφ

 
[ ]max 0.1 0.8,0.9 0.44= ∗ ∗

 
0.396=

Factor maximization
For MAP queries in graphical models, we introduce another operation on factors 
called maximization.

Let X be a set of variables, Y X/ε  a variable, and ( ),X Yφ  a factor. We define factor 
maximization of Y in ( ),X Yφ  to be a factor /υ  over the variables X such that the 
following occurs:

( ) ( )max ,
Y

X X Yυ φ=/
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Let's take an example of factor maximization to make this clearer:

Fig 3.14: Factor maximization of variable B from a factor ( ), ,A B Cφ

Therefore, in the preceding example of the A -> B network, we had ( ) ( )max |
B

A P B Aφ = . 
Also, another important property of maximization is that it can be inserted in 
equations if some of the factors don't involve the variable over which the maximization 
is being performed. More formally, for a variable 1Y Scopeφ/ε :

( )1 2 1 2max max
B B

φ φ φ φ∗ = ∗

This is a very important property of maximization as it allows us to push the 
maximization operation inside equations, as we used to push summation in the 
case of the variable elimination operation. This avoids the full joint distribution and 
allows us to operate on much smaller factors.



Chapter 3

[ 93 ]

Let's now try a sample run of the algorithm on the late-for-school model:

Step Variable 
eliminated

Factors used Intermediate 
factor

New factor

1 A ( ) ( ), , ,A JA J A Rφ φ ( )1 , ,J A Rυ/ ( )1 ,J Rτ

2 J ( ) ( ) ( )1, , , , , ,Q LQ J L J G J Rφ φ τ ( )2 , , , ,Q L R G Jυ/ ( )2 , , ,Q L R Gτ

3 R ( ) ( )2, , , ,R R Q L R Gφ τ ( )3 , , ,Q L R Gυ/ ( )3 , ,Q L Gτ

4 Q ( )3 , ,Q L Gτ ( )4 , ,Q L Gυ/ ( )4 ,L Gτ

5 G ( ) ( )4, ,G G L Gφ τ ( )5 ,L Gυ/ ( )5 Lτ

6 L ( )5 Lτ ( )6 Lυ/ τ θ6 ( )

We can clearly see that the max-marginal operation is very similar to the variable 
elimination we performed. The only difference is that rather than marginalizing the 
intermediate factor over the variable to be eliminated, we maximize over the variable 
to be eliminated.

We can compute the max-marginal over networks using pgmpy:

In [1]: from pgmpy.models import BayesianModel
In [2]: from pgmpy.factors import TabularCPD
In [3]: from pgmpy.inference import VariableElimination

# Constructing the model
In [4]: model = BayesianModel(
                      [('rain', 'traffic_jam'),
                       ('accident', 'traffic_jam'),
                       ('traffic_jam', 'long_queues'),
                       ('traffic_jam', 'late_for_school'),
                       ('getting_up_late', 'late_for_school')])
In [5]: cpd_rain = TabularCPD('rain', 2, [[0.4], [0.6]])
In [6]: cpd_accident = TabularCPD('accident', 2, [[0.2], [0.8]])
In [7]: cpd_traffic_jam = TabularCPD(
                         'traffic_jam', 2,
                         [[0.9, 0.6, 0.7, 0.1],
                             [0.1, 0.4, 0.3, 0.9]],                          
                            evidence=['rain',
                                      'accident'],
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                            evidence_card=[2, 2])
In [8]: cpd_getting_up_late = TabularCPD('getting_up_late', 2,
                                         [[0.6], [0.4]])
In [9]: cpd_late_for_school = TabularCPD(
                      'late_for_school', 2,
                         [[0.9, 0.45, 0.8, 0.1],
                          [0.1, 0.55, 0.2, 0.9]], 
                         evidence=['getting_up_late', 'traffic_jam'],
                         evidence_card=[2, 2])
In [10]: cpd_long_queues = TabularCPD('long_queues', 2,
                                      [[0.9, 0.2],
                                       [0.1, 0.8]],
                                      evidence=['traffic_jam'],
                                      evidence_card=[2])
In [11]: model.add_cpds(cpd_rain, cpd_accident,
                        cpd_traffic_jam, cpd_getting_up_late,
                        cpd_late_for_school, cpd_long_queues)

# Calculating max marginals
In [12]: model_inference = VariableElimination(model)
In [13]: model_inference.max_marginal(
                              variables=['late_for_school'])
Out[13]: 0.5714285714285714
In [14]: model_inference.max_marginal(
                 variables=['late_for_school', 'traffic_jam'])
Out[14]: 0.40547815820543098

# For any evidence in the network we can simply pass the evidence 
# argument which is a dict of the form of {variable: state}
In [15]: model_inference.max_marginal(
                            variables=['late_for_school'],
                            evidence={'traffic_jam': 1})
Out[15]: 0.5714285714285714
In [16]: model_inference.max_marginal(
                            variables=['late_for_school'],
                            evidence={'traffic_jam': 1,                              
                                      'getting_up_late': 0})
Out[16]: 0.80000000000000004
In [17]: model_inference.max_marginal(
                      variables=['late_for_school','long_queues'],
                      evidence={'traffic_jam': 1,
                                'getting_up_late': 0}
Out[17]: 0.6399999999999999
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# Again as in the case of VariableEliminaion we can also pass the 
# elimination order of variables for MAP queries. If not specified 
# pgmpy automatically computes the best elimination order for the 
# query.
In [18]: model_inference.m_marginal(
                variables=['late_for_school'], 
                elimination_order=['traffic_jam', 
                                   'getting_up_late', 'rain',
                                   'long_queues', 'accident'])
Out[18]: 0.5714285714285714
In [19]: model_inference.max_marginal(
                      variables=['late_for_school'],
                      evidence={'accident': 1},
                      elimination_order=['traffic_jam',                                                                                                                                            
                                                                                                            
                                         'getting_up_late',
                                         'rain', 'long_queues'])
Out[19]: 0.57142857142857129

MAP using belief propagation
In the previous section, we discussed the MAP variable elimination algorithm. In 
the same way that we extended the sum-product variable elimination algorithm for 
the clique tree and ended up on the belief propagation algorithm, we can perform 
MAP using the belief propagation. In cases where variable elimination can be 
computationally intractable, belief propagation has a clear advantage.

The procedure for belief propagation remains the same as discussed in the case of the 
sum-product. The only thing that changes is the message that is passed between the 
two clusters 

iC  and jC . Earlier, we used to compute messages from jC  to 
iC , that is 

τ j i→
, as follows:

( ) { },j i j

j i j k j
C S k Neighbor j i

τ υ τ→ →
− −

= /∑ ∏
ε

However, now, instead of summing out the variables ,j i jC S− , we will maximize with 
respect to them. Thus, the message in the case of MAP belief propagation can be 
formulated as follows:

( ) { },

max
i j

j i j k jCj S k Neighbour j i
τ υ τ→ →− −

= / ∏
ε
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When both, the upward pass and the downward pass of the messages are complete, 
all the adjacent clusters of the tree are said to be max-calibrated. At max-calibration, 
for any two adjacent clusters iC  and jC , we have the following:

( )
, ,

. , max max
i i j j i j

i j i j i jC S C S
Sµ β β

− −
= =

A clique tree is said to be max-calibrated when all the adjacent edges are  
max-calibrated.

Finding the most probable assignment
In the previous section, we computed the maximum unnormalized probability value, 
but for MAP, we need to compute the states of the variables corresponding to the 
one in which this value occurs. Taking our earlier example of the network A → B, we 
first computed ( )max |

b
P b a , but the state of the variable B for which P(b|a) gives the 

maximum value also depends on the state of the variable A. So, we will first need to 
compute ( )max |

b
P b a  and then compute the state of B accordingly. So, from the CPDs 

of the network, we can see that ( )max
a
P a . Now we will look for ( ) 1max

a
P a a= , which 

gives us ( )1max |
b
P b a . Hence, we get the maximum values corresponding to b0  and a0 .

Also, the computational cost of this operation is not high, as we are simply doing 
another pass over the factors that have already been computed. Hence, the cost 
would be linear in the number of variables in the network.

Now, let's continue the previous code example and do some map queries over the 
networks using pgmpy:

In [20]: model_inference.map_query(variables=['late_for_school'])
Out[20]: {'late_for_school': 0}
In [21]: model_inference.map_query(variables=['late_for_school',
                                              'accident'])
Out[21]: {'accident': 1, 'late_for_school': 0}

# Again we can pass the evidence to the query using the evidence 
# argument in the form of {variable: state}.
In [22]: model_inference.map_query(variables=['late_for_school'],                  
                                      evidence={'accident': 1})
Out[22]: {'late_for_school': 0}
In [23]: model_inference.map_query(variables=['late_for_school'],
                                   evidence={'accident': 1, 
                                             'rain': 1})
Out[23]: {'late_for_school': 0}
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# Also in the case of MAP queries we can specify the elimination 
# order of the variables. But if the elimination order is not 
# specified pgmpy automatically computes the best elimination 
# order for the query.
In [24]: model_inference.map_query(
                      variables=['late_for_school'],
                      elimination_order=['accident', 'rain',                  
                                         'traffic_jam',
                                         'getting_up_late', 
                                         'long_queues'])
Out[24]: {'late_for_school': 0}
In [25]: model_inference.map_query(
                       variables=['late_for_school'], 
                    evidence={'accident': 1},
                    elimination_order=['rain',
                                       'traffic_jam', 
                                       'getting_up_late',
                                       'long_queues'])
Out[25]: {'late_for_school': 0}

# Similarly MAP queries can be done for belief propagation as well.
In [26]: belief_propagation.map_query(['late_for_school'],                         
                                      evidence={'accident': 1})
Out[26]: {'late_for_school': 0}

Predictions from the model using pgmpy
In the previous sections, we have seen various algorithms to computing conditional 
distributions and learnt how to do MAP queries on the models. A MAP query is 
essentially a way to predict the states of variables, given the states of other variables. 
In a real-life problem, we are given some data with which we try to create a model 
for our problem. Then, using this trained model, we try to predict the states of 
variables for some new data point. This is the process with which we approach our 
supervised learning problems in machine learning.

Now, to design the models, we need to create CPDs or factors, add them to the base 
model, create an inference object, and then do MAP queries over it for new data 
points to predict variable states. This whole process is done very often in machine 
learning, so pgmpy provides the direct methods fit and predict to simplify the 
whole process. Let's look at some code to understand how this works. To keep it 
simple, we will once again be working with the restaurant model, with each variable 
having two states.

# First let's import modules that we will be needing
In [1]: import numpy as np
In [2]: from pgmpy.models import BayesianModel
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# Now let's create some random data over which we will train and 
# test the model. Here we are creating 1000 data points with each 
# value either 0 or 1.
In [3]: data = np.random.randint(low=0, high=2, size=(1000, 4))
In [4]: data
Out[4]: 
array([[0, 1, 0, 0],
       [1, 1, 1, 0],
       [1, 1, 0, 0],
        ..., 
       [1, 0, 0, 1],
       [1, 0, 1, 0],
       [1, 0, 0, 0]])

# Now in general machine learning problems it doesn't matter which 
# column of the array represents which variable (until we use same 
# order for both training and prediction) because all the values 
# are on symmetrical axis but in graphical models each variable is 
# different (in the way it is connected to other variables etc) so 
# we will need to specify which columns of data are for which 
# variable. For that we will use pandas.

In [5]: import pandas as pd
In [6]: data = pd.DataFrame(data, columns=['cost', 'quality',  
                                           'location', 
                                           'no_of_people'])
In [7]: data
Out[7]:
     cost  quality  location  no_of_people
0       0        1         0             0
1       1        1         1             0
2       1        1         0             0
3       0        1         1             1
4       1        1         1             0
5       1        0         1             0
6       0        0         0             0
7       0        0         1             0
..     ...      ...       ...           ...
993     0        0         1             1
994     0        0         0             0
995     0        0         0             0
996     1        0         0             0
997     1        0         0             1
998     1        0         1             0
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999     1        0         0             0

In [8]: train = data[:750]

# We will try to predict the no_of_people from our model. So for 
# test data we will delete that column and then later on predict 
# those values.
In [9]: test = data[750:].drop('no_of_people', axis=1)
In [10]: test
Out[10]:
     cost  quality  location
750     0        0         1
751     0        1         1
752     0        1         1
753     1        0         0
754     1        0         1
755     1        0         1
756     0        1         0
757     1        0         0
 ..    ...      ...       ...
992     0        0         0
993     0        0         1
994     0        0         0
995     0        0         0
996     1        0         0
997     1        0         0
998     1        0         1
999     1        0         0

# Now we will need to create the base network structure for the 
# model.
In [11]: restaurant_model = BayesianModel(
                      [('location', 'cost'), 
                       ('quality', 'cost'),
                       ('location', 'no_of_people'),
                       ('cost', 'no_of_people')])
In [12]: restaurant_model.fit(train)

# Fit computes the cpd of all the variables from the training data 
# that we provided.
In [13]: restaurant_model.get_cpds()
Out[13]: 
[<pgmpy.factors.CPD.TabularCPD at 0x7fc01c029be0>,
 <pgmpy.factors.CPD.TabularCPD at 0x7fc01c029eb8>,
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 <pgmpy.factors.CPD.TabularCPD at 0x7fc01c029e48>,
 <pgmpy.factors.CPD.TabularCPD at 0x7fc01c029e80>]

# Now for predicting the values of no_of_people using this model 
# we can simply call the predict method on our test data.
In [14]: restaurant_model.predict(test).values.ravel()
Out[14]:
array([1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 
 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0,   
 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 
 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 
 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0,
 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0,
 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0,  
 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 
 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 
 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 
 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 
 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 
 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 
 0, 0, 0])

We can see here that using fit and predict has reduced a lot of work and 
simplified things. Also, in some cases, the training data we have might not represent 
the problem correctly. For example, let's say we know from prior knowledge that the 
probability of having a restaurant in a good location or a bad location is 0.5, but it 
is possible that the training set that we have has more data points for restaurants in 
good locations, which could eventually lead to bias in our model. In such cases, we 
could manually adjust the probability values in the CPDs so that they represent the 
actual problem correctly.

A comparison of variable elimination and 
belief propagation
In the previous sections, we saw that both belief propagation and variable 
elimination are inter-related. Belief propagation is an extension of the variable 
elimination algorithm on clique trees. So, one might think that they would have the 
same computational complexity. However, in reality, belief propagation has some 
advantages over variable elimination.
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The major advantage is the ability to query over multiple variables of a model 
with a single computation (that is, calibration of the clique tree). Once the tree is 
calibrated, we could query about multiple variables without performing any further 
computation. However, in the case of variable elimination, we have to run the 
algorithm more than once. Thus, if we have such a problem, in which we need to 
query the model multiple times, we should definitely use belief propagation.

On the flipside, belief propagation also has a disadvantage over variable elimination. 
Clique trees are a memory-expensive data structure. Moreover, in belief propagation, 
we have to store the generated intermediate factors, whereas in the case of variable 
elimination, we just discard them. Belief propagation is also less flexible as compared 
to variable elimination, as the clique tree is fixed and predetermined. So, in the  
case of very huge networks, memory might become a constraint when using  
belief propagation.

In a nutshell, we can say that variable elimination is computationally expensive, 
whereas belief propagation is memory expensive. We have to consider the trade-offs 
to decide which algorithm to go for. If we have a very large network, then variable 
elimination would be an attractive solution as it wouldn't be expensive in terms  
of memory. However, in the case of smaller networks and multiple queries,  
where computational time matters, it would be better to go with the belief 
propagation approach.

Summary
In this chapter, we discussed two algorithms, namely variable elimination and belief 
propagation, to find the conditional probability and do MAP queries on the models. 
We also discussed how the elimination order of variables in variable elimination 
affects the running complexity of the algorithm. To select efficient ordering, we 
discussed a few algorithms. Then, we discussed MAP queries, using which we 
can approach our machine learning problems through graphical models. We also 
compared variable elimination and belief propagation and discussed the benefits of 
each of these and when to use them.

In the next chapter, we will discuss various algorithms for approximate inference, 
including sampling methods, using which we can do approximate inference over 
models. Approximate methods help us save computation when we don't need the 
computations to be exact.
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Approximate Inference

In the previous chapter, we saw algorithms for exact inference on graphical models. 
The computational complexity of calculating exact inference is exponential to the tree 
width of the network. Hence, for much larger networks whose tree width is large, 
exact inference becomes infeasible. Also, in many of our real-life problems, we are 
not particularly concerned about the exact probabilities of random variables. Rather, 
we are much more interested in the relative probabilities of the states of variables. 
Therefore, in this chapter, we will discuss algorithms to perform approximate 
inference over networks. There are many algorithms for approximate inference, but 
the approach to find an approximate distribution remains the same in all of them. In 
most of these, we usually define a target class Q of easy distributions, and then from 
this class, we try to find the distribution that is closest to our actual distribution PΦ  
and answer inference queries from this estimated distribution.

In this chapter, we will discuss:

• Approximate inference as an optimization problem
• Solving optimization problems using Lagrange multipliers
• Deriving a clique tree algorithm from an optimization problem
• The loopy belief propagation algorithm with code examples
• The expectation propagation algorithm with code examples
• The mean field algorithm with code examples
• The full particles and collapsed particles sampling methods
• The Markov chain Monte Carlo method
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The optimization problem
Let's start with a little recap of exact inference. Assume that we have a factorized 
distribution in the following form:

( ) ( )1P x U
Z φ

φ
φΦ

Φ

= ∏
ε

Here, Z is the partition function, φ  are the factors in the network, and Uφ  is the 
scope of the factor φ . In the case of exact inference, we computed ( )P xΦ  and then 
answered queries over this distribution.

In the case of belief propagation, the end result of running the algorithm was a set 
of beliefs on the clusters and sepsets. This set of beliefs was able to represent the 
joint distribution ( )P XΦ

. So, in the case of exact inference, we tried to find a set 
of calibrated beliefs that was able to represent our joint distribution exactly. For 
approximate algorithms, we will try to select the set of beliefs from all the sets of 
beliefs that conform to the cluster tree and are best able to represent our original 
distribution ( )P XΦ

.

So now the question is, how do we compare the similarity between these two 
distributions? There are many methods that we can use to compute the relative 
similarity of the two distributions, for example, Euclidean distance, 

1L  distance, and 
relative entropy. However, the problem with most of these methods is that we need 
to answer hard queries on ( )P xΦ

 to compute the distance, and the whole purpose of 
approximate inference is to avoid computing the exact joint distribution. By using 
relative entropy to measure the similarity between the distributions, we can avoid 
answering hard queries on ( )P XΦ . Now, let's see how relative entropy is defined 
over distributions.

The relative entropy between two distributions 1P  and 2P  is defined as follows:

( ) ( )
( )1

1
1 2

2

|| P
P x

D P P E ln
P x

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

The relative entropy is always non-negative and is 0 only when 1 2P P= . Also, the 
relative entropy is a nonsymmetrical quantity, so ( ) ( )1 2 2 1|| ||D P P D P P≠ .

Now, in our case of approximate inference, we will use ( )( )||D Q P xΦ  (not 
( )( )||D P x QΦ ) because computing it also requires computing ( )P xΦ ). Then,  

we can find the value of Q, which minimizes ( )( )||D Q P xΦ .
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Summarizing our complete optimization problem, let's assume that we have a cluster 
tree T for a distribution PΦ  and are given following the set of beliefs:

{ } ( ) ( ){ },: : ,i T Ti ji V i j Eβ µ∪Q = ε ε

Here, iC  denotes the clusters in T, iβ  denotes beliefs over iC , and ( ),i jµ  denotes 
beliefs over ( ),Sep i j . This set of beliefs represents a distribution Q as follows:

( ) ,,

T

T

ii V

i ji j E

Q
β

µ
=
∏
∏

ε

ε

As the cluster tree is calibrated, it satisfies the marginal consistency constraints and 
therefore ( ),i jµ  for each ( ), Ti j Eε  are the marginals of iβ  and jβ . Therefore, the set 
of calibrated beliefs Q satisfies the following equations:

( ) [ ]i i iQ c cβ=

( )( ) , ,, i j i ji jQ µ ⎡ ⎤= ⎣ ⎦s s

Now, we can define our optimization problem by selecting Q from the space of 
calibrated sets Q:

{ } ( ) ( ){ },: : ,i T Ti ji V i j Eβ µ∪ ∪Q = ε

This must be done such that it minimizes ( )||D Q PΦ  with the following constraints:

( ) ( ) ( )
( )

,

, , , ,,

1
i i j

i

i j i j i i T i j i j
C S

i i T
c

s c i j E s Val S

c i V

µ β

β
−

⎡ ⎤ = ∀ ∀⎣ ⎦

= = ∀

∑

∑

ε ε

ε

To solve this optimization problem, we examine the different configurations of 
beliefs that satisfy the marginal consistency constraints and select the one that 
minimizes our objective entropy function ( )||D Q PΦ .
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The energy function
In the previous section, we saw that to find the approximate distribution, we need  
to optimize the relative entropy ( )||D Q PΦ , but computing the relative entropy 
requires us to compute a summation over all possible instantiations of χ . To  
avoid this, we will now try to transform our optimization function in the form of  
an energy function.

We know the following:

( ) ( ) ( )|| Q QD Q P E lnQ E ln Pχ χΦ Φ= −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

Using the product form of ( )P xΦ
, we have the following:

( ) ( )ln ln lnP U Zφ
φ

χ φΦ
Φ

= −∑
ε

Also, we know that ( ) ( )Q QH E lnQχ χ= − ⎡ ⎤⎣ ⎦ . Using this in the preceding equation, 
we get the following:

( ) ( ) ( )|| Q Q QD Q P H E ln U E ln Zφ
φ

χΦ
Φ

⎡ ⎤
= = − +⎢ ⎥

⎣ ⎦
∑
ε

,F P Q lnZΦ⎡ ⎤= − +⎣ ⎦
!

Here, ,F P QΦ⎡ ⎤⎣ ⎦
!  is the energy functional where:

( ) ( )
( )

,

|
Q Q

Q Q

F P Q E ln P H

E ln H
φ

χ χ

φ χ
Φ

Φ

⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦
= +∑

! !

ε

The important thing to note here is that Z in the relative entropy term doesn't 
depend on Q. Hence, minimizing the relative entropy ( )||D Q PΦ  is equivalent to 
maximizing the energy function ,F P QΦ⎡ ⎤⎣ ⎦

! .
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Now, the energy function has two terms. The first one is known as the energy term. 
The energy term is the summation of the expectations of the logarithm of the factors 
in φ . Therefore, in this term, each factor of φ  appears separately. Hence, if these 
factors are small, then the expectations will be dealing with much fewer variables. 
The second term in the energy function is called the entropy term and it represents the 
entropy of Q. The complexity of computing this depends on our choice of Q.

Exact inference as an optimization
Before considering the approximate inference methods, let's solve the exact inference 
problem using the concepts that we have so far developed in this chapter. In the 
previous sections, we saw that maximizing the energy function is equivalent to 
minimizing the relative entropy between Q and ( )P xΦ

. So now, if we restrict 
ourselves to calibrated cluster trees, we can further simplify the objective function. 
Restricting ourselves to calibrated cluster trees allows us to rewrite the energy 
function in a factored form as a sum of terms, each depending directly on only one of 
the beliefs in Q. This form also reveals structure in the distribution, and is therefore a 
much better starting point for further analysis.

Given a cluster tree T with a set of beliefs Q and an assignment α , which maps 
factors in  to clusters in T, we define the factored energy function as follows:

[ ] ( )
( )

,
,

,
i i i i j

T T T

C i i i j
i V i V i j

F P Q E ln H C H Sβ β µυΦ −⎡ ⎤ ⎡ ⎤= + −/ ⎣ ⎦⎣ ⎦ ∑ ∑ ∑! !
ε ε ε

Here, 
iυ/  is the initial potential assigned to 

iC :

( ),
i

Iφ α φ
υ φ

=

=/ ∏

Here, 
i iCE β  represents the expectation on the value iC  given the beliefs iβ .

The first term is a sum of terms of the form [ ]
i iC iE lnβ υ/ . Here, 

iυ/  is a factor over 
the scope iC  and therefore, it maps from ( )iVal C  to +! . Hence, its logarithm is a 
function from ( )iVal C  to +! . The beliefs iβ  are a distribution over ( )iVal C . We can 
therefore compute the expectation ( )

i

i i i
c

c lnβ υ/∑ . The last two terms are the entropies 
of the beliefs associated with the clusters and sepsets in the tree. The important 
benefit of this reformulation is that all the terms are now local and hence represent a 
specific belief factor. We will see later on that this makes our tasks much simpler.
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Now, using this form of the energy function, we can define the optimization 
problem. Now, as Q is factorized according to T, we can represent it with a set of 
calibrated beliefs. Marginal consistency is a constraint on the beliefs that requires 
neighboring beliefs to agree on the marginal distribution on their joint subset, which 
is equivalent to requiring that the beliefs be calibrated. Thus, we have the following 
constrained optimization problem:

{ } ( ){ },: :i T i j TQ i i jβ µ= − ε

We want to optimize ,F P QΦ⎡ ⎤⎣ ⎦
! , where:

( ) ( ) ( )
,

, , , ,
,

, ,
i i j

i j i j i i T i j i j
C S

s c i j E s Val Sµ β⎡ ⎤ = ∀ ∀⎣ ⎦ ∑ ε ε

( )
1

1i i T
c

c i Vβ = ∀∑ ε

( ) ( )1 0 ,i T i ic i c Val Cβ ≥ ∀ ε

The constraints here are to ensure that the beliefs in Q are calibrated and represent 
legal distributions.

As we now have a constrained optimization problem, we can use the Lagrangian 
multipliers to solve this. Applying the Lagrangian multipliers, we get the following 
equation:

( )

( )
,

, , , ,

,

1
T i

i i i j

i i i
i V c

i j j i i j i i i j i j
i j Nb c s

J F P Q

c

s s c s

λ β

λ β µ

Φ

→

⎡ ⎤= ⎣ ⎦
⎛ ⎞

− −⎜ ⎟
⎝ ⎠

⎛ ⎞
⎡ ⎤ ⎡ ⎤− −⎜ ⎟⎣ ⎦ ⎣ ⎦⎜ ⎟⎝ ⎠

∑ ∑

∑ ∑ ∑ ∑

! !

ε

ε

Here, iNb  is the neighbor of iC  in the clique tree. We have introduced Lagrange 
multipliers iλ  for each belief factor iβ  to ensure that it sums up to 1. Also, for each 
pair of neighboring cliques i and j and their assignment to sepset ,i js , we introduced 
a Lagrange multiplier 

,j i i jsλ → ⎡ ⎤⎣ ⎦  to ensure that the marginal distribution of ,i js  in 
jβ  is consistent with its values in the sepset beliefs ( ),i jµ .



Chapter 4

[ 109 ]

Now, we simply need to find the maximum value of the Lagrangian J and for that, 
we take its partial derivatives with respect to ( )i icβ , , ,i j i jsµ ⎡ ⎤⎣ ⎦  and the Lagrange 
multipliers:

( ) [ ] ( ) ,ln ln 1
i

i i i i i j i i j
j Nbi i

J c c s
c

υ β λ λ
β →
∂ ⎡ ⎤= − − −/ ⎣ ⎦∂ ∑

ε

,

, , , ,
,

ln 1
i j

i j i j i j i j j i i j
i j s

J s s sµ λ λ
µ → →
∂ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦∂

Now, equating these to 0 to find the maxima, we get the following equations:

( ) { } { },exp 1 | exp
i

i i i i i j i i j
j Nb

c c sβ λ υ λ → ⎡ ⎤= − − −/ ⎣ ⎦∏
ε

{ } { } { },, , ,exp 1 exp exp
i ji j i j i j i j j i ss sµ λ λ→ ⎡ ⎤→ ⎣ ⎦

⎡ ⎤ ⎡ ⎤= − − −⎣ ⎦ ⎣ ⎦

These equations describe beliefs as functions of terms of the form { },exp i j i jsλ→ ⎡ ⎤− ⎣ ⎦ . 
These terms play the role of a message i jδ → . To make this more explicit:

, ,
1exp
2i j i j i j i js sδ λ→ →

⎧ ⎫⎡ ⎤ ⎡ ⎤= − −⎨ ⎬⎣ ⎦ ⎣ ⎦⎩ ⎭

Rewriting the equation, we get the following:

( ) ( ) ,
1exp 1
2

i

i i i i i i j i i j
j Nb

c Nb c sβ λ υ δ →
⎧ ⎫ ⎡ ⎤= − − + /⎨ ⎬ ⎣ ⎦⎩ ⎭

∏
ε

, , , ,i j i j i j i j j i i js s sµ δ δ→ →⎡ ⎤ ⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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We can now rewrite the message i jδ →  as follows:

( )

( )
{ }

,

,

, ,
,

,

,

,

,

,

1exp 1
2

i i j

i i j i

i j i j
i j i j

j i i j

i i i jC S

j i i j

i i i i k i i k
C S k Nb j

s
s

s

C s

s

Nb c s

µ
δ

δ

β

δ

λ υ δ

→
→

→

→
− −

⎡ ⎤⎣ ⎦=
⎡ ⎤⎣ ⎦

=
⎡ ⎤⎣ ⎦

⎧ ⎫ ⎡ ⎤= − − + /⎨ ⎬ ⎣ ⎦⎩ ⎭

∑

∑ ∏
ε

Note that the term 
1exp 1
2i iNbλ− +  is a constant as it doesn't depend on ic . When we 

combine these equations, we can solve for iλ  to ensure that this constant normalizes 
the clique beliefs iβ .

The propagation-based approximation 
algorithm
The propagation-based approximation algorithm is a more generalized version 
of the belief propagation algorithm and works on the same principle of passing 
messages. In the case of exact inference, we used to construct a clique tree and then 
passed messages between the clusters. However, in the case of the propagation-based 
approximation algorithms, we will be performing message passing on cluster graphs.

Let's take the simple example of a network:

Fig 4.1: A simple Markov network
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It is possible to construct multiple cluster graphs for this network. Let's take the 
example of the following two cluster graphs:

Fig 4.2: Cluster graphs for the network in Fig 4.1

Fig 4.2 shows two possible cluster graphs for the network in Fig 4.1. The cluster 
graph in Fig 4.2(a) is a clique tree and the clusters are (A, B, C) and (B, C, D). 
Whereas, the cluster graph in Fig 4.2(b) has four clusters (A, B), (B, C), (C, D),  
and (A, D). It also has loops:

Fig 4.3: Change of estimated probability with a number of iterations
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Let's assume that the factors for the network are such that it's more likely for the 
variables to agree with the same state than different states, that is, ( )0 0,a bβ  and 
( )1 1,a bβ  are much larger than ( )0 1,a bβ  and ( )1 0,a bβ , and so on. Applying the 

message passing algorithm, messages will be passed from (A, B) to (B, C) to (C, D) 
to (A, D) and then again from (A, D) to (A, B). Also, let's consider that the strength 
of the message ( ) ( ), , ,A B B Cµ  increases the belief that b = 0. So now, when the cluster 
passes the message, it will increase the belief that c = 0 and so on. So finally, when 
the message reaches (A, B), it will increase the belief of A being 0, which in turn 
also increases the chances of B being 0. Hence, in each iteration, because of the loop 
in the network, the probability of A being 0 keeps on increasing until it reaches a 
convergence point, as shown in the graph in Fig 4.3.

Cluster graph belief propagation
In the case of exact inference, we had imposed two conditions on cluster graphs  
that led us to the clique trees. The first one was that the cluster graph must be a  
tree and should have no loops. The second condition was that it must satisfy 
the running intersection property. Now, in the case of the cluster graph belief 
propagation, we remove the first condition and redefine a more generalized  
running intersection property.

We say that a cluster graph satisfies a running intersection property if, whenever 
there is a variable X, and iX Cε  and jX Cε , there is only one path from iC  to jC  
through which messages about X flow.

This new generalized running intersection property leaves us another question, 
"how do we define sepsets now?". Let's take the example of the following two cluster 
graphs in Fig 4.4:

Fig 4.4: Two different clusters for the same network
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In the case of exact inference, our sepsets used to be the common elements in the 
clusters. However, as we can see in the examples in the Fig 4.4, the same variable is 
common in multiple clusters. Therefore, to satisfy our running intersection property, 
we can't have it in the sepset of all the clusters.

In the case of clique trees, we performed inference by calibrating beliefs. Similarly,  
in the case of cluster graphs, we also say that the graph is calibrated if, for each edge 
(i, j) between the clusters iC  and jC , we have the following:

, ,i i j j i j

i i
C S C S

β β
− −

=∑ ∑

Looking at the preceding equation, we can also say that a cluster graph is calibrated 
if the marginal of a variable X is same in all clusters containing X in their sepsets.

To analyze the computational benefits of this cluster graph algorithm, we can take 
the example of a grid-structured Markov network, as shown in Fig 4.5:

Fig 4.5: A 3 x 3 two-dimensional grid network
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In the case of grid graphs, we are usually given the pair-wise parameters so they can 
be represented very compactly. If we want to do exact inference on this network, 
we would need separating sets that are as large as cutsets in the grid. Hence, the 
cost of doing exact inference would be exponential in n, where the size of the grid 
is n x n. Whereas, if we are doing approximate inference, we can very easily create 
a generalized cluster graph that directly corresponds to the factors given in the 
network. We can see one such example in Fig 4.6:

Fig 4.6: A generalized cluster graph for a 3 x 3 grid network

Each iteration of propagation in a cluster graph is quadratic in n.
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Constructing cluster graphs
In our discussion so far, we have considered that we were already given the cluster 
graph. In the case of clique trees, we saw that different tree structures give the same 
result, but the computational cost varies in different structures. Also, in the case 
of cluster graphs, different structures have different computational costs, but the 
results also vary greatly. A cluster graph with a much lower computational cost 
may give very poor results compared to other cluster graphs with higher costs. 
Thus, while constructing cluster graphs, we need to consider the trade-off between 
computational cost and the accuracy of inference.

There are various approaches to construct cluster graphs. Let's discuss a few of them.

Pairwise Markov networks
In this class of networks, we are given potentials on each of the variables [ ]i iXφ  
and also pairwise potentials over some of the variables ( ), ,i ji j X Xφ ⎡ ⎤⎣ ⎦ . These pairwise 
potentials correspond to the edges in the Markov network, and this kind of network 
occurs in many natural problems. For these kinds of networks, we add clusters 
for each of these potentials and then add edges between clusters with common 
variables. Taking the example of a 3 x 3 grid graph, we will have a cluster graph,  
as shown in Fig 4.7:

Fig 4.7: The cluster graph for a 3 x 3 grid when viewed as a pairwise MRF
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Also, one thing worth noticing is that we can always reduce any network to a 
pairwise Markov structure and apply this transformation to construct cluster trees.

Bethe cluster graph
Pairwise Markov networks work well only for cases where we have factors with 
small scopes. However, in cases where the factors are complex, we won't be able to 
do the transformation of the pairwise Markov network. For these networks, we can 
use the Bethe cluster graph construction. In this method, we create a bipartite graph 
placing all the complex potentials on one side and the univariate potentials on the 
other side. Then, we connect each univariate potential with the cluster that has that 
variable in its scope, thus resulting in a bipartite graph, as shown in Fig 4.8:

Fig 4.8: Cluster graph for a network over potentials {A, B, C}, {B, C, D}, {B, D, F}, {B, E}, and {D, E}  
viewed as a Bethe cluster graph

Its implementation with pgmpy is as follows:

In [1]: from pgmpy.models import BayesianModel
In [2]: from pgmpy.inference import ClusterBeliefPropagation as 
        CBP
In [3]: from pgmpy.factors import TabularCPD
In [4]: restaurant_model = BayesianModel([
                           ('location', 'cost'), 
                           ('quality', 'cost'), 
                           ('location', 'no_of_people'), 
                           ('cost', 'no_of_people')])
In [5]: cpd_location = TabularCPD('location', 2, [[0.6, 0.4]])
In [6]: cpd_quality = TabularCPD('quality', 3, [[0.3, 0.5, 0.2]])
In [7]: cpd_cost = TabularCPD('cost', 2, 
                              [[0.8, 0.6, 0.1, 0.6, 0.6, 0.05], 
                               [0.2, 0.1, 0.9, 0.4, 0.4, 0.95]], 
                              ['location', 'quality'], [2, 3])
In  [8]: cpd_no_of_people = TabularCPD(
                            'no_of_people', 2,
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                            [[0.6, 0.8, 0.1, 0.6], 
                             [0.4, 0.2, 0.9, 0.4]],
                            ['cost', 'location'], [2, 2])
In  [9]: restaurant_model.add_cpds(cpd_location, cpd_quality, 
                                   cpd_cost, cpd_no_of_people)
In [10]: cluster_inference = CBP(restaurant_model)
In [11]: cluster_inference.query(variables=['cost'])
In [12]: cluster_inference.query(variables=['cost'], 
                                 evidence={'no_of_people': 1, 
                                           'quality':0})

Propagation with approximate messages
In the earlier section, we discussed a variant of belief propagation where we relaxed 
the constraint of having a clique tree, and did belief propagation on a cluster graph. 
In this section, we will take a different approach. Instead of relaxing on the structure, 
we will be approximating the messages passed between the clusters. Although this 
approach can be extended to work with cluster graphs as well, the scope of this book 
is only limited to clique trees.

Let's consider a simple pairwise Markov model, as shown in Fig 4.9. As discussed 
in the previous section, a pairwise Markov model is simply a Markov model with 
the factors ,i jφ  associated with each edge i jX X− , along with the univariate factors 
iφ  corresponding to each random variable iX . Thus, the following model will have 

factors such as 
1,1, 1,2A Aφ , 

1,1, 2,1A Aφ , and 
1,1, 2,2A Aφ  along with 

11A
φ , 

21A
φ , 

31A
φ , and so on. Let's 

also assume that each random variable present in this network is binary.

Fig 4.9: Markov model represented by 3 x 3 grid network
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A cluster tree for this network can be created, as shown in Fig 4.10. Although 
this may not be an optimal cluster tree, it's a valid one as it satisfies the running 
intersection property, and each node represents a cluster of random variables  
present in the original network.

Fig 4.10: Cluster tree corresponding to the Markov model in Fig 4.9

In our previous discussion about the cluster tree (or clique tree), we never discussed 
the internal structure of each cluster, but the internal structure of the cluster becomes 
important in the context of this algorithm. For the calibration of the previously 
mentioned clique tree, we need to transmit message across the clusters. Suppose 
the message from 1C  to 2C , that is 

1 2 1,1 2,1 3,1, ,A A Aδ → ⎡ ⎤⎣ ⎦ , can be approximated by its 
factored form as follows:

1 2 1,1 2,1 3,1 1 2 1,1 1 2 2,1 1 2 3,1, ,A A A A A Aδ δ δ δ→ → → →⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

We can see that the factored form is more compact as compared to the original 
message. The original message will have 32 8=  variables, whereas the factored 
form can be represented only by using 2 * 3 = 6 parameters (two parameters for each 
variable as they are assumed to be binary). However, this compact representation 
helps us to save only two variables. So, the question that arises is whether the 
approximation is worth the savings or not. How can we use these approximations 
to compute the inference? We can get similar saving even if we just use some 
approximation that is richer than the naive independence assumption we used earlier. 
Even if we use approximations by exploiting the conditional independence among the 
random variables represented by the chain structure 1,1 2,1 3,1A A A− − , the question still 
remains the same: how can we use these approximations to compute the inference?
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Before answering these questions, let's discuss factor sets. A factor set { }1,..., nφ φ φ=
!  

provides a compact representation of 
1 2 nφ φ φ⋅ ⋅⋅⋅ . Thus, the product of two factor sets 

is nothing but their union. For example, suppose { }1 11 1,..., nφ φ φ=
!

 and { }2 21 2,..., mφ φ φ=
!

. 
Then, their product should be 11 12 1 21 22 2n mφ φ φ φ φ φ⋅ ⋅⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ , which can be written as a 
factor set of { } { }11 1 21 2,..., ,...,n mφ φ φ φ∪ .

Coming back to our previous question, how can we use these approximations to 
compute the inference? Let's assume that we somehow factorized the message from 
cluster 1C  to cluster 2C , that is 1 2δ →  into a factor set 1 2δ →

!
 consisting of univariate 

factors. Similarly, consider that we factorized the message from cluster 3C  to cluster 
2C , and 3 2δ →  into a factor set 3 2δ →  consisting only of univariate terms. To compute 

the belief of cluster 3 2δ →

!
, we need to multiply the initial potential of 2C , that is 

2C  with messages 1 2δ →  and 3 2δ → . As both the messages 1 2δ →  and 3 2δ →  have been 
factored into factor sets consisting only of univariate factors, the network structure of 
cluster 

2C  remains unchanged (as shown in Fig 4.11). That is, no extra edge between 
any two variables is added as none of the factors from the message represent 
interaction among the random variables:

Fig 4.11: Internal network structure of cluster 
2C  remains unchanged.  

It is still a tree with tree width of two.

As the cluster 2C  has a tree structure internally, we can apply any exact inference 
algorithm to compute the marginals of the random variables present in this cluster.
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If we use a richer approximation that exploits the chain structure of the cluster 
1C  to 

compute the message 1 2δ → , it will contain factors representing interactions among 
11A , 21A  and 21A , 31A . When this message is multiplied with 2υ/  along with 3 2δ → , it 

will modify the network structure of 2C ; it will introduce an edge between 11 21A A−  
as well as an edge between 21 31A A− , as shown in Fig 4.12. Still, the network has a 
tree width of two and we can still use exact inference to compute the marginals of the 
random variables present in this cluster.

Fig 4.12: The internal network structure of 2C  with a richer approximation of 1 2δ →

So we can see how these approximations can help us in computing the inference.

Message creation
Now, the question is, how do we compute these messages, or more precisely, how do 
we factorize the message from cluster iC  to jC , that is i jδ → , into factor sets?

To answer this question, let's go back to the first principle method of computing a 
message from iC  to jC . i jδ →  is computed as follows:

( ) { },i i j

i j i k i
C S neighbor i j

δ υ δ→ →
− −

= /∑ ∏
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If all the messages from neighbors 
k iδ →

 are already factorized into factor sets, then 
their product is nothing but the union of their corresponding factor sets. The initial 
potential 

iυ/  can be factorized into a factor set of all the initial factors present in the 
cluster. The final factor product can be computed by the union of all the factor sets.

To compute the message, we also need to marginalize the after-product. To 
marginalize a factor set φ

!
 with respect to a variable X, we need to couple all 

the factors containing X and marginalize them. So, like the product of a factor 
set, marginalizing it doesn't present any problems. So, the major problem lies in 
factorizing the marginal probabilities into a factor set. In a clique tree, the results 
from marginalizing a clique would not satisfy any conditional independence, so it 
can't be factorized into a factor set. However, for efficient inference, we want the 
messages to be factorized into a factor set. This can be achieved by approximating 
the message by a family of distributions that can be factorized. It turns out that there 
is a family of distributions that can be approximated for these messages and that 
the distribution is simply the product of the marginals of the individual variables 
present in the messages. The message is often not normalized, so it is not treated as 
a distribution. However, we can normalize the message and treat it as a distribution. 
To compute the marginals, we can use any of the exact inference algorithms that we 
discussed earlier, such as variable elimination or belief propagation.

Summarizing all these points, we can create an algorithm to compute the 
approximate messages to be transmitted between clusters in the clique tree:

1. Create a factor set φ
!

 by the union of all the factor sets corresponding to the 
initial cluster potential as well as the input messages received.

2. Initialize an inference data structure U  with this factor set to perform exact 
inference. It could be a clique tree in the case of belief propagation or a set of 
factors in the case of variable elimination.

3. Perform inference on U  to compute the marginals of variables to be present 
in the final message.

4. The factor set of the marginals is the output message.
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For example, let's try to work out how to create the messages 1 2δ →  and 2 3δ →  for 
the cluster tree represented in Fig 4.11, starting with 1 2δ → . This can be computed by 
creating a factor set φ

!
 as the union of 1υ

!
 (factor set corresponding to 1υ/ )  

and the input message. As there is no input message for this cluster, φ
!

 will be 
{ }11, 21 21, 31 11 21 31, , , ,A A A A A A Aφ φ φ φ φ . To compute the marginals for 11A , 21A , and 31A  
using the belief propagation method, we could use a clique tree, as shown in Fig 4.13:

Fig 4.13: A Clique tree to compute the marginals of 11A , 21A , and 31A

The factor set representing the message from 1C  to 2C , that is 
1 2δ →

!
, formed by the 

marginals of 11A , 21A , and 31A  will be { }11 21 31, ,A A Aφ φ φ
! ! !

.

Similarly, to compute 2 3δ →

!
, the first step is to create 1 2 2φ δ υ→= ∪

! ! ! , where 2υ
!

 
represents the factor set corresponding to 2υ/ . Then, we create an inference data 
structure for exact inference to compute the marginals of 12A , 22A , and 32A  and 
initialize with φ

!
. As 1 2δ →

!
 contains only univariate factors, the structure of 2C  

remains unchanged. Fig 4.14 represents the clique tree that can be used as an 
inference data structure to compute the marginals of 12A , 22A , and 32A :

Fig 4.14: A clique tree to compute the marginals of 12A , 22A , and 32A
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Inference with approximate messages
In the previous section, we discussed the methods of creating messages to transmit 
between clusters. Once we have these messages, the next task is to perform inference 
on the clique tree. While discussing exact inference, we discussed two methods 
of performing inference on a clique tree, one being the sum-product algorithm, 
the other being the sum-product-divide or belief update algorithm. For the exact 
inference, both of these algorithms will give the same result, but in the case of 
approximate inference, they are not the same.

Before we discuss these steps in detail, let's look at the difference between the 
exact and approximate inference algorithms. Once the tree is calibrated, the beliefs 
so computed don't represent the joint probability distribution of all the variables 
present in the cluster (as it was in the case of exact inference). So, to answer 
queries about the variables present in the cluster, we can't just marginalize other 
variables from the belief. Instead, after calibration, we have the factor sets of beliefs 
parameterizing the network structure of the corresponding cluster. In the previous 
example, after the clique tree is calibrated, the belief for the cluster 2C  can be 
factorized as follows:

2 2 1 2 3 2β υ δ δ→ →= ∪ ∪/
! ! !!

The factors present in the factor set 
2β
!  parameterize the network structure of cluster 

2C . As the network structure allows tractable inference, we can answer queries 
about these variables using inference methods such as variable elimination or  
belief propagation.

Sum-product expectation propagation
The sum-product expectation propagation algorithm is similar to the sum-product 
algorithm we discussed for exact inference, except that we modify the procedure 
to compute the message. There, we computed the message by summing out 
(or marginalizing) the variable from the product of factors. Here, we compute 
the message as discussed in the previous section. Similar to the exact inference 
equivalent, in the case of approximate inference for calibration of the clique tree, 
we require two passes, one upward and one downward. So, unlike the previous 
approximate inference, it converges in a fixed number of steps.
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Let's start with a simple example, as shown in Fig 4.15:

Fig 4.15: Simple pairwise Markov network consisting of four random variables

Suppose the factors associated with the given Markov model are as follows:

A B ( )1 ,A Bφ

0a 0b 10

0a 1b 0.1

1a 0b 0.1

1a 1b 10

A C ( )2 ,A Cφ

0a 0c 5

0a 1c 0.2

1a 0c 0.2

1a 1c 5
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C D ( )4 ,D Bφ

0c 0d 0.5

0c 1d 1

1c 0d 20

1c 1d 2.5

D B 0a

0d 0b 5

0d 1b 0.2

1d 0b 0.2

1d 1b 5

From the preceding factors, we can see that there is a strong coupling between the 
variables A and B. It seems that A = B. The potentials ( )1 ,A Cφ  and ( )4 ,D Bφ  indicate 
weaker coupling between A and C, and B and D.

If we perform the exact inference in this network, we find the following marginal 
posteriors:

( )0 0, 0.274P a b =
 
( )0 0, 0.102P c d =

( )0 1, 0.002P a b =
 
( )0 1, 0.018P c d =

( )1 0, 0.041P a b =
 
( )1 0, 0.368P c d =

( )1 1, 0.682P a b =
 
( )1 1, 0.512P c d =
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Let's try to compute the marginals using the approximate inference method that we 
discussed now using pgmpy. The clique tree constructed is shown in Fig 4.16:

Fig 4.16: The clique tree constructed for the Markov model represented in Fig 4.18

In [1]: from pgmpy.factors import Factor
In [2]: from pgmpy.factors import FactorSet
In [3]: from pgmpy.models import MarkovModel
In [4]: from pgmpy.inference import VariableElimination
In [5]: from pgmpy.inference import BeliefPropagation
In [6]: import functools
In [7]: def compute_message(cluster_1, cluster_2,  
                            inference_data_structure=
                                VariableElimination):
    """
       Computes the message from cluster_1 to cluster_2.
    The messages are computed by projecting a factor set to   
    produce a set of marginals over a given set of scopes. The 
    factor set is nothing but the factors present in the models.

       The algorithm for computing messages between any two clusters 
    is:
    * Build an inference data structure with all the factors 
      represented in the cluster.
    * Perform inference on the cluster using the inference data 
      structure to compute the marginals of the variables present 
      in the sepset between these two clusters.
       * The output message is the factor set of all the computed 
         marginals.
      
       Parameters
    ----------
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    cluster_1: MarkovModel, BayesianModel, or any pgmpy supported 
               graphical model
                  The cluster producing the message
    cluster_2: MarkovModel, BayesianModel, or any pgmpy supported 
               graphical model
               The cluster receiving the message
 
       inference_data_structure: Inference class such as 
                             VariableElimination or BeliefPropagation
                  The inference data structure used to produce factor 
                  set of marginals
    """
    # Sepset variables between the two clusters
    sepset_var = set(cluster_1.nodes()).intersection(
                                            cluster_2.nodes())

    # Initialize the inference data structure
    inference = inference_data_structure(cluster_1)

    # Perform inference
    query = inference.query(list(sepset_var))

    # The factor set of all the computed messages is the output 
    # message query would be a dictionary with key as the variable 
    # and value as the corresponding marginal thus the values 
    # would represent the factor set
       return FactorSet(*query.values())

In [8]: def compute_belief(cluster, *input_factored_messages):
       """
       Computes the belief a particular cluster given the cluster 
       and input messages

       \delta_{j \rightarrow i} where j are all the neighbors of 
       cluster i. The cluster belief is computed as:
    .. math::
      \beta_i = \psi_i \prod_{j \in Nb_i} \delta_{j \rightarrow i} 
    
    where \psi_i is the cluster potential. As the cluster belief 
    represents the probability and it should be normalized to sum 
    up to 1.

    Parameters
    ----------
    cluster: MarkovModel, BayesianModel, or any pgmpy supported 
             graphical model
            The cluster whose cluster potential is going to be 
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            computed.
   *input_factored_messages: FactorSet or a group of FactorSets
            All the input messages to the clusters. They should be 
            factor sets

    Returns
    -------
    cluster_belief: Factor
        The cluster belief of the corresponding cluster
    """
    messages_prod = functools.reduce(lambda x, y: x * y, 
                            input_factored_messages)

    # As messages_prod would be a factor set, so its corresponding 
    # factor would be product of all the factors present in the 
    # factorset
    messages_prod_factor = functools.reduce(lambda x, y: x * y, 
                            messages_prod.factors)

    # Computing cluster potential psi
    psi = functools.reduce(lambda x, y: x * y, 
                           cluster.get_factors())

    # As psi represents the probability it should be normalized
    psi.normalize()

    # Computing the cluster belief according the formula stated 
    # above
    cluster_belief = psi * messages_prod_factor

    # As cluster belief represents a probability distribution in 
    # this case, thus it should be normalized
    cluster_belief.normalize()

    return cluster_belief

In [9]: phi_a_b = Factor(['a', 'b'], [2, 2], [10, 0.1, 0.1, 10])
In [10]: phi_a_c = Factor(['a', 'c'], [2, 2], [5, 0.2, 0.2, 5])
In [11]: phi_c_d = Factor(['c', 'd'], [2, 2], [0.5, 1, 20, 2.5])
In [12]: phi_d_b = Factor(['d', 'b'], [2, 2], [5, 0.2, 0.2, 5])

# Cluster 1 is a MarkovModel A--B
In [13]: cluster_1 = MarkovModel([('a', 'b')])

# Adding factors
In [14]: cluster_1.add_factors(phi_a_b)
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# Cluster 2 is a MarkovModel A--C--D--B
In [15]: cluster_2 = MarkovModel([('a', 'c'), ('c', 'd'), 
                                  ('d', 'b')])

# Adding factors
In [16]: cluster_2.add_factors(phi_a_c, phi_c_d, phi_d_b)

# Message passed from cluster 1 -> 2 should the M-Projection of psi1 
# as the sepset of cluster 1 and 2 is A, B thus there is no need to 
# marginalize psi1
In [17]: delta_1_2 = compute_message(cluster_1, cluster_2)

# If we want to use any other inference data structure we can pass 
# them as an input argument such as: delta_1_2 = 
# compute_message(cluster_1, cluster_2, BeliefPropagation)
In [18]: beta_2 = compute_belief(cluster_2, delta_1_2)
In [19]: print(beta_2.marginalize(['a', 'b'], inplace=False))

     ╒═════╤═════╤════════════╕

     │ c   │ d   │   phi(c,d) │

     ╞═════╪═════╪════════════╡

     │ c_0 │ d_0 │     0.0208 │

     ├─────┼─────┼────────────┤

     │ c_0 │ d_1 │     0.0417 │

     ├─────┼─────┼────────────┤

     │ c_1 │ d_0 │     0.8333 │

     ├─────┼─────┼────────────┤

     │ c_1 │ d_1 │     0.1042 │

     ╘═════╧═════╧════════════╛

# Lets compute the belief of cluster1, first we need to compute the 
# output message from cluster 2 to cluster 1
In [20]: delta_2_1 = compute_message(cluster_2, cluster_1)

# Lets see the distribution of both of these variables in the 
# computed message
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In [21]: for phi in delta_2_1.factors:
             print(phi)

     ╒═════╤══════════╕

     │ b   │   phi(b) │

     ╞═════╪══════════╡

     │ b_0 │   0.8269 │

     ├─────┼──────────┤

     │ b_1 │   0.1731 │

     ╘═════╧══════════╛

     ╒═════╤══════════╕

     │ a   │   phi(a) │

     ╞═════╪══════════╡

     │ a_0 │   0.0962 │

     ├─────┼──────────┤

     │ a_1 │   0.9038 │

     ╘═════╧══════════╛

# The belief of cluster1 would be
In [22]: beta_1 = compute_belief(cluster_1, delta_2_1)
In [23]: print(beta_1)

     ╒═════╤═════╤════════════╕

     │ a   │ b   │   phi(a,b) │

     ╞═════╪═════╪════════════╡

     │ a_0 │ b_0 │     0.3264 │

     ├─────┼─────┼────────────┤

     │ a_0 │ b_1 │     0.0007 │
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     ├─────┼─────┼────────────┤

     │ a_1 │ b_0 │     0.0307 │

     ├─────┼─────┼────────────┤

     │ a_1 │ b_1 │     0.6422 │

     ╘═════╧═════╧════════════╛

Let's start with 
1 2δ →

!
. It can be computed by marginalizing 1υ/  with respect to A and 

B. Normalizing the messages to treat it as a distribution, we get ( )0 0.5A aφ =  and 
( )1 0.5A aφ = . Similarly, for B we get ( )0 0.5B bφ = , ( )1 0.5B bφ = . Thus, { }1 2 ,A Bδ φ φ→ =

!
 or 

to put 1 2δ →  would be as follows:

( )1 2 0 0, 0.25a bδ → =

( )1 2 0 1, 0.25a bδ → =

( )1 2 1 0, 0.25a bδ → =

( )1 2 1 1, 0.25a bδ → =

However, from exact inference we know the following:

( )1 2 0 0, 0.495a bδ → =

( )1 2 0 1, 0.005a bδ → =

( )1 2 1 0, 0.005a bδ → =

( )1 2 1 1, 0.495a bδ → =

We see that the approximate message loses the coupling between A and B. Thus, it is 
a poor approximation of the exact message. The problem with this approach is that 
the approximation of the message is done considering the impact of this message on 
the downstream cluster.
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Similarly, if we compute 2 1δ → , we get ( )2 1 1 0.904aδ → =  and ( )2 1 1 0.173bδ → = . This is 
again in contrast with the factor ( )1 ,A Bφ , which strongly suggests that A= B. When 
we combine the message with 1υ/ , we get the belief for the cluster ( )1 0 1, 0.001a bβ =  
as follows:

( )1 0 0, 0.326a bβ =

( )1 0 1, 0.001a bβ =

( )1 1 0, 0.031a bβ =

( )1 1 1, 0.642a bβ =

This is fairly close to what the exact marginal suggests.

Belief update propagation
As we have seen in the previous example, when we had the message 2 1δ → , we 
computed the posterior probability of A and B fairly close to the exact value. This 
raises the question, can we use the newly computed posterior probability to correctly 
approximate the message 1 2δ → ? The answer is, no, we can't. The reason for this is 
that, if we use the information that we got from jC  and use it to correct 1 2δ → , we 
will be double-counting evidence. So, is there a way to get away with this double-
counting yet still use the information?

If you recall, in the previous chapter, we discussed the belief update method that we 
used to compute the message from the cluster iC  to the cluster jC  as follows:

,i i j
iC S

i j
j i

β
δ

δ
−

→
→

=
∑

So, using the belief update propagation, we can use the information 2 1δ →  to modify 
1 2δ →

. Let's see how to use it in the case of factor sets. The preceding equation can be 
translated for the factor set as follows:

( )i j i

i j
i j

j i

Approxσ β
σ

δ
δ

→

→
→

→

=

=

!
!!
!
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Here, ( )iApprox β  approximates the belief of the cluster iC  by a family of 
distributions that can be factorized. This is similar to what we did in the case of 
approximating a message by a family of factorized distributions. Let's go back to  
the example again to see how to implement it.

First, initialize all the messages to 1. In the first iteration, the value of 
1 2δ →

!
 is the same 

as what we computed earlier as 
2 1δ →

r
 is 1 and so would be 

2 1δ →

r
. In the second iteration 

to compute 1 2δ →

!
, we will be using the value of 1β . Marginalizing 1β  with respect to 

B, we get ( )0A aφ  equals 0.326 + 0.001 = 0.327 and ( )1A aφ  equals 0.031+ 0.642 = 0.673. 
Similarly, marginalizing 1β  with respect to B, we get ( )0 0.326 0.031 0.357B bφ = + =  
and ( )1 0.642 0.001 0.643B bφ = + = . So, 1 2σ →  will be as follows:

( )1 2 0 0, 0.327 0.357 0.116a bσ → = × =

( )1 2 0 1, 0.327 0.643 0.210a bσ → = × =

( )1 2 1 0, 0.673 0.357 0.240a bσ → = × =

( )1 2 1 1, 0.673 0.643 0.432a bσ → = × =

1 2δ →
 can be computed by dividing 

1 2σ →
 with 

2 1δ →
. Finally, we have to  

normalize 
1 2δ →

 to treat it as a distribution.

The newly formed 
1 2δ →

 can be viewed as a correction for 
2β  in the next iteration, 

and so, it will be 2 1δ →  for 1β . So, unlike the previous method, it doesn't converge in 
two steps; rather it requires multiple iterations of message passing between the two 
clusters, each correcting the other.

MAP inference
In the previous chapter, we studied MAP inference using variable elimination and 
max-product message passing in clique trees. In a similar fashion, we can apply  
max-product message passing on the cluster graph.

Recall that in the case of clique trees, the max-product message passing was analogous 
to their sum-product message passing algorithm, differing only in the way the 
message was computed. We used the maximization operation instead of summation. 
Also, in the case of cluster trees, the max-product message passing is analogous to 
their sum-product counterpart, maximizing the variable instead of summing it out. 
Unlike their sum-product counterpart, there is no guarantee of the convergence of 
this algorithm; it is more susceptible to nonconvergence. One reason for this is that 
the summation averages the messages, whereas maximization doesn't. Thus, it can't 
reduce oscillations.
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Before going into further discussion about max-product message passing in cluster 
trees, let's discuss local optimality and decoding. We say that an assignment *ξ  has 
the local optimality property, if for each clique iC  in a max-calibrated clique tree, we 
have the following:

( ) ( )* argmax
i

i i ic
C Cξ βε

The assignment to iC  in *ξ  optimizes the belief of iC  (that is iβ ). The task of 
finding a locally optimal assignment *ξ , given a max-calibrated set of beliefs is 
known as decoding.

Just like the sum-product message passing on cluster trees, the max-product message 
passing will not give the exact max-marginal even after max-calibration. The beliefs 
so formed after max-calibration are called pseudo max-marginals.

Once we have the pseudo max-marginals by max-product message passing, we 
are left with the task of decoding these marginals. As discussed earlier, the task of 
decoding is nothing but finding a locally optimal assignment, and unlike clique trees, 
such assignments do not necessarily exist in the case of cluster graphs. Let's look at a 
simple example. Consider the cluster graph shown in Fig 4.17:

Fig 4.17: The cluster graph of three random variables A, B, and C
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The beliefs after max-calibration are as follows:

A B ( )1 ,A Bβ

0a 0b 1

0a 1b 2

1a 0b 2

1a 1b 1

B C ( )2 ,B Cβ

0b 0c 1

0b 1c 2

1b 0c 2

1b 1c 1

A C ( )3 ,A Cβ

0a 0c 1

0a 1c 2

1a 0c 2

1a 1c 1

For example, to maximize ( )1 ,A Bβ , we can select the value of 1a , 0b . Thus, to 
maximize the belief ( )2 ,B Cβ , we have to select 0c . Now, we can see that the 
assignments 1a  and 1c  do not correspond to the maximum value of belief ( )3 ,A Cβ
. No matter which assignment we choose, we can't obtain a single joint assignment 
that maximizes all three beliefs. These kinds of loops are called frustrating loops.
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From the preceding example, we can create a simple hypothesis that if all the node 
beliefs are ambiguous, then there is no locally optimal joint assignment, but this is 
not always true. Let's take the example of the following beliefs:

A B ( )1 ,A Bβ

0a 0b 2

0a 1b 1

1a 0b 1

1a 1b 2

B C ( )2 ,B Cβ

0b 0c 2

0b 1c 1

1b 0c 1

1b 1c 2

A C ( )3 ,A Cβ

0a 0c 2

0a 1c 1

1a 0c 1

1a 1c 2

We can see that assignments 0a , 0b , and 0c , as well as 1a , 1b , and 1c  are locally 
optimal.
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We saw some cases where there are no locally optimal assignments and there are 
cases where we can find locally optimal assignments. So, the basic question that 
arises is, how do we find locally optimal assignments, if any exist?

From the definition of local optimality, we can say that an assignment is locally optimal 
if and only if it selects optimal assignments from each cluster. Keeping this in mind, 
we can now assign labels to each assignment in a cluster. The label of the assignment 
can be "legal", if it optimizes the belief of that cluster, or "illegal" if it doesn't. So now, 
the decoding task is converted into a task of finding an assignment such that it is the 
legal value for all the clusters. This is nothing but a constraint satisfaction problem, 
where the constraints are obtained from the local optimality. The detailed survey of 
the constrained satisfaction problem is beyond the scope of this book. Thus, given a 
max-product calibrated cluster graph, we can convert it into a constrained satisfaction 

problem (CSP) simply by taking the belief of each cluster, and changing each 
assignment that locally optimizes the belief to 1 and the rest to 0. We then run a CSP 
solution method. If the outcome is an assignment that achieves 1 in every cluster belief, 
then the assignment is guaranteed to be a locally optimal assignment. For example, one 
of the CSP solution methods can be defined in terms of the Markov network, where all 
the entries are either 1 for legal assignments or 0 for illegal ones. Thus, CSP is simply 
finding the MAP assignment in a Markov model with {0, 1} valued beliefs. The CSP 
problem is itself an NP-hard problem. Thus, we can't guarantee that we would be able 
to find a locally optimal assignment efficiently, even if it existed.

The following is the implementation using pgmpy:

In [1]: from pgmpy.models import BayesianModel
In [2]: from pgmpy.factors import TabularCPD
In [3]: from pgmpy.inference import ClusterBeliefPropagation as 
        CBP

# Create a bayesian model as we did in the previous chapters
In [4]: model = BayesianModel([
                     ('rain', 'traffic_jam'), 
                     ('accident', 'traffic_jam'),
                     ('traffic_jam', 'long_queues'), 
                     ('traffic_jam', 'late_for_school'),
                     ('getting_up_late', 'late_for_school')])
In [5]: cpd_rain = TabularCPD('rain', 2, [[0.4], [0.6]])
In [6]: cpd_accident = TabularCPD('accident', 2, [[0.2], [0.8]])
In [7]: cpd_traffic_jam = TabularCPD(
                            'traffic_jam', 2,
                            [[0.9, 0.6, 0.7, 0.1],
                             [0.1, 0.4, 0.3, 0.9]],
                            evidence=['rain', 'accident'],
                            evidence_card=[2, 2])
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In [8]: cpd_getting_up_late = TabularCPD('getting_up_late', 2,
                                         [[0.6], [0.4]])
In [9]: cpd_late_for_school = TabularCPD(
                            'late_for_school', 2,
                            [[0.9, 0.45, 0.8, 0.1],
                             [0.1, 0.55, 0.2, 0.9]],
                            evidence = ['getting_up_late', 
                                        'traffic_jam'],
                            evidence_card=[2, 2])
In [10]: cpd_long_queues = TabularCPD('long_queues', 2,
                                      [[0.9, 0.2],
                                       [0.1, 0.8]],
                                      evidence=['traffic_jam'],
                                      evidence_card=[2])
In [11]: model.add_cpds(cpd_rain, cpd_accident, cpd_traffic_jam,
                        cpd_getting_up_late, cpd_late_for_school,
                        cpd_long_queues)
In [12]: cbp_inference = CBP(model)
In [13]: cbp_inference.map_query(variables=['traffic_jam',  
                                            'late_for_school'])
In [14]: cbp_inference.map_query(variables=['traffic_jam'],
                                 evidence={'accident': 1, 
                                           'long_queues': 0})

Sampling-based approximate methods
In the previous sections, we discussed a class of approximate methods that used factor 
manipulation methods to answer approximate queries on the models. Now, in this 
section, we will be discussing a very different approach to approximate inference. In 
this method, we will try to estimate the original distribution by instantiating all the 
variables or a few variables of the network. Using these instantiations, we will try to 
answer queries on the model. The methods using instantiations are generally known as 
particle-based methods, and each instantiation is known as a particle.

There are many variations of the way we select particles or create instantiations of the 
variables. For example, we can either create particles using a deterministic process, or 
we can sample particles from some distribution. Also, we can have different notions 
of a particle. For example, we can have a full assignment of all the variables in the 
network, commonly known as full particles, or we can have assignments only to a 
subset ( )|P x w  of variables of the network representing the conditional probability 
( )|P x w . These are commonly known as collapsed particles. The main problem with 

full particles is that each particle is able to represent only a very small part of the 
whole space, and therefore, for a reasonable representation of the distribution, we 
need many more particles than are needed for collapsed particles.
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In general, in the case of sampling methods, to approximate the values of queries, 
we generate some particles, and then, using these particles, we try to estimate the 
value or the expectation of the query relative to each of the generated particles and 
aggregate these to get the final result.

Also, concepts such as forward sampling and likelihood weighting, discussed in the 
next sections, only apply to Bayesian networks and not to Markov networks.

Forward sampling
The simplest approach to the generation of particles is forward sampling. In the case 
of forward sampling, we generate random samples [ ]1ξ , [ ]2ξ , …, [ ]Mξ  from the 
distribution P(X).

Let's take the example of generating particles using our restaurant model:

Fig 4.18: Restaurant model
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We start by simply selecting a state of the variable Location with the probabilities 0.6 
and 0.4. Let's say we select the location of the restaurant to be good and select the 
quality to be good as well. Now, knowing the observed states of Location and Quality, 
we can now select the state of Cost to be high with the probability 0.8 and low with 
the probability 0.2. Similarly, selecting a state for No. of People, we will get a single 
full particle over our restaurant model. To generate M particles, we repeat the same 
process M times to get M instantiations of the variables.

The main thing to notice is that we start with sampling variables that have no 
parents, and do it in an order such that before we sample any variable, we already 
have the values for all the parents of that variable.

After generating some particles, we can estimate the expectation of some function f 
using these particles as follows:

( ) ( )
1

1ˆ |
M

D
m

E f f m
M

ξ
=

= ∑

Now, for a case when we want to compute the probability of some event Y = y, using 
these particles, we can simply calculate the fraction of particles satisfying the event. 
So, we can compute the probability P(Y = y) as follows:

( ) [ ]{ }
1

1ˆ 1
M

D
m

P y y m y
M =

= =∑

So, taking the example of our restaurant model and computing the probability 
of Cost to be high, ( )0P C  of the restaurant is equivalent to getting the fraction of 
particles satisfying these values:

( ) [ ]{ }0

1

1 1 0
M

m
P C m C

M
ξ

=

= < >=∑

The key points to note in the case of particle methods are as follows:

• The result of the inference using sampling highly depends on the number of 
particles that we used for inference. It is quite possible that generating a very 
small number of samples will not represent our original distribution at all, 
and will thus give very inaccurate results.

• We can use the same particles to answer multiple queries, and therefore, 
sampling methods are very effective when we need to query the model 
multiple times.
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Conditional probability distribution
Until now, we have only discussed computing the marginal probability of the  
form P(Y= y) over variables, but in the real world, we are mostly working with 
conditional probability distributions rather than marginal distributions. Now, 
with sampling methods, we have multiple ways of approaching the problem of 
conditional distributions, but all of them turn out to be significantly harder than 
computing marginals.

Let's say we want to compute the probability of P(y|E = e). The first approach that 
we can think of is to generate particles normally from the distribution and then 
reject the samples that don't satisfy the condition E = e. This method is known as 
rejection sampling. However, with this method, we will be wasting a lot of particles 
and thus increasing the computational cost. The real problem arises when the 
probability values of these events are very low. So, let's say P(E = e) = 0.005 and we 
generate 10,000 samples. Then we will have only around 50 samples that will satisfy 
our conditions. In general, to generate *M  samples that satisfy our conditions, we 
will have to generate ( )* /M M P e=  samples. So, this method turns out to be really 
expensive when the probabilities of the variables are very small.

Another approach that we can take is to have separate estimators for P(e) and  
P(y, e), and after computing these, we can easily compute P(y|e) using the chain rule. 
Also, with proper bounds on P(e) and P(y, e), we can get a good approximation for 
P(y|e). The problem, however, is that to get a low relative error on P(e), we will need 
samples that again depend on the value of P(e). Also, a good bound on the relative 
error of P(e) doesn't guarantee any bound on ( )

( )
,P y e

P e
. So, once again, we are stuck 

with the same problem that we saw earlier.

Likelihood weighting and importance 
sampling
In the previous section, we saw that the rejection method was very expensive 
because we were generating particles that were not consistent with our evidence, 
and then ultimately rejecting them. So, one possible solution to this problem is to 
generate particles that are more relevant to our event. We will be exploring this 
solution in this section.
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To make the samples relevant to our evidence, we can force the sampling method to 
only take those values that we have observed. Taking the example of our restaurant 
model, let's say that we have observed that the location is good. Then, every time 
when generating a sample, we will only select the Location variable to be good. 
In this way, we can have observations that are consistent with our evidence, but 
this method leads to another problem. Let's say that we have observed that Cost is 
high, so when we generate samples forcing Cost to be high, we will still have the 
probability of Location to be good as being 0.6, whereas as we have observed the cost 
to be high, it should have increased. The reason why this is happening is that this 
method fails to take into account the fact that the probability of the cost to be high 
is greater when the location is good than when the location is bad. To account for 
this error, we introduce weighting terms with each particle, which is equal to the 
probability of getting the forced state, given the states of other variables. Therefore, 
for the sample L = good, Q = good, C = high, and N = low, we will have the weighting 
0.8 because  = 0.8. Now, if multiple variables are forced, say C = good and N = high, 
then for the sample, L = good, Q = good, C = good, and N = high, we will have the 
weighting 0.6 X 0.8 = 0.48.

Generalizing this whole concept of assigning weighting to particles results 
in an algorithm known as likelihood weighting. Using this algorithm, we 
generate weighted particles. Using this likelihood weighting algorithm, we 
compute a set of M samples and their weights ( )| ,P C good L good Q good= = =
, and using these samples, we can now estimate the conditional distribution 

[ ] [ ] [ ] [ ] [ ] [ ]1 , 1 , 2 , 2 , ,D w w M w Mξ ξ ξ=< > < > < > as follows:

( ) [ ] [ ]{ }
[ ]

1

1

1ˆ |
M

m
D M

m

w m y m y
P y e

w m
=

=

=
=∑

∑

Looking closely, we can see that this method is a generalization of forward sampling. 
In the case of forward sampling, each of the particles had the weight as 1, therefore, 
the numerator was simply the total number of particles satisfying the event and the 
denominator was the total number of particles. Also, it's very important to note that 
in the case of forward sampling, we can use these weighted particles to compute the 
probability of any event.

Importance sampling
As it turns out, likelihood weighting is a special case of a more generic method 
known as importance sampling. In this section, we will talk about importance 
sampling and show how likelihood weighting is derived from it.
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Importance sampling is an approach used to estimate the expectation of a function 
( )f x  relative to some distribution P(X), known as target distribution. As we saw in 

the previous sections, we can easily do this by generating particles [ ] [ ] [ ]1 , 2 , , Mξ ξ ξ  
from P and then estimating the following:

[ ] [ ]( )
1

1 M

P
m

E f f x m
M =

≈ ∑

However, in some cases, we may want to generate samples from some other 
distribution Q, known as proposal distribution or sampling distribution, for whatever 
reason (for instance, it might be impossible or computationally very expensive to 
generate samples from P). For example, P might be a posterior distribution of a 
Bayesian network and hence, computing it may be very expensive. To deal with 
such problems, in this section, we will discuss methods to get expectation estimates 
relative to the distribution P, by generating samples from some other distribution Q.

So now, if we are generating our samples from the distribution Q, we can't simply 
use it to compute our expectation value. We need to adjust our estimator to 
compensate for this incorrect sampling. One obvious way to do this is as follows:

( ) ( ) ( ) ( ) ( )
( )P X Q X

P X
E f X E f X

Q X
⎡ ⎤

=⎡ ⎤ ⎢ ⎥⎣ ⎦
⎣ ⎦

We can easily prove that this equality holds as the following:

( ) ( ) ( )
( ) ( ) ( ) ( )

( )
( ) ( )

( ) ( )

Q X
x

x

P

P X P X
E f X Q x f x

Q X Q X

f x P X

E X f X

⎡ ⎤
=⎢ ⎥

⎣ ⎦
=

= ⎡ ⎤⎣ ⎦

∑

∑

Now, as we have a relationship between the expectations relative to P(X) and Q(X), 
we can generate samples [ ] [ ] [ ]{ }1 , 2 , ,D Mξ ξ ξ=  from the distribution Q and then 
estimate the following:

( ) [ ]( ) [ ]( )
[ ]( )1

1ˆ
M

D
m

P x m
E f f x m

M Q x m=

= ∑
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We call this the unnormalized importance sampling estimator. The main point to note for 
this estimator is that it's unbiased and hence its mean for any dataset is precisely the 
desired value. The second thing to note is that the variance of this type of estimator 
decreases linearly with the number of samples. Hence, we can use this property to 
estimate the number of samples we need for a good estimate.

One problem with unnormalized importance sampling is that we have considered 
that we already know P. However, the most frequent reason for sampling from a 
different distribution Q is that we only know the unnormalized distribution ( )P X% , 
where ( ) ( )P X ZP X=% . So in this case, we can define the weightings as follows:

( ) ( )
( )
P X

w X
Q X

=
%

With this new weighting, however, our standard estimator for the expectation  
fails, but we can define a similar estimator for this case as well. Before that, let's  
see whether the expectation of the random variable ( )w X  is Z:

( ) ( ) ( ) ( )
( )

( )

Q X
x

x

P X
E w X Q X

Q X

P X Z

=⎡ ⎤⎣ ⎦

= =

∑

∑

%

%

Now, we can define our previous estimator function as follows:

( ) ( ) ( ) ( )

( ) ( ) ( )
( )

( ) ( ) ( )
( )

( ) ( ) ( )

( ) ( ) ( )
( ) ( )

1

1

P X
x

x

x

Q X

Q X

Q X

E f X P x f x

P x
Q x f x

Q x

P x
Q x f x

Z Q x

E f X w X
Z
E f X w X
E w X

=⎡ ⎤⎣ ⎦

=

=

= ⎡ ⎤⎣ ⎦

⎡ ⎤⎣ ⎦=
⎡ ⎤⎣ ⎦

∑

∑

∑
!
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Given M samples [ ] [ ] [ ]1 , 2 , ,D x x x M= , we can estimate ( )DE f%  as follows:

( ) [ ]( ) [ ]( )
[ ]( )

1

1

M

m
D M

m

f x m w x m
E f

w x m
=

=

=∑
∑

%

This estimator is known as normalized importance sampling estimator or weighted 

importance sampling estimator. Unlike the unnormalized estimator, normalized 
importance sampling estimators do have a bias.

Importance sampling in Bayesian 
networks
In this section, we will apply the concept of importance sampling in Bayesian 
networks. We will discuss the proposal distribution Q, which we usually use in the 
case of Bayesian networks.

Assume that in a Bayesian network, we want to focus our samples to a particular set 
of events Z = z, either because we want the probability of Z or we have observed Z. 
Taking the example of our restaurant model, let's say we have observed that the cost 
is high. It is easy for us to sample the descendant variables of Cost according to this 
condition. However, it is not possible for us to sample the nondescendant variables 
without performing inference over them.

So now, we define a distribution that simplifies the generation of particles. This new 
distribution is known as mutilated network proposal distribution. Let's say, given  
a network B and some conditions Z = z, we define the mutilated network ZB z=   
as follows:

• Each node iZ Zε  has no parents in , and the CPDs of all ZB z=  give 1 to 
i iZ z=  and 0 to all other values ( )'

i iZ Val Zε .
• The parents and CPDs of all other nodes X Z/ε  are unchanged.
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So, for the case where we observe Cost as high, we get the network as shown  
in Fig 4.19:

Fig 4.19: The mutilated restaurant model when the cost is high

Importance sampling done with this method is exactly the same as the LW 
algorithm.
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Computing marginal probabilities
If we want to compute the marginal probability of some event Z = z, we can simply 
use forward sampling or do unnormalized sampling with the target distribution 
as ( )BP X  and the proposal distribution Q generated from the mutilated network 

ZB z= . With the indicator function for our query as ( ) ( ){ }1f Z zξ ξ= = , our 
unnormalized estimator is as follows:

( ) [ ]{ } [ ]( )

[ ]
1

1

1ˆ 1

1

M

D
m
M

m

P z m Z z w m
M

w m
M

ξ ξ
=

=

= < >=

=

∑

∑

This equality holds in this case because the samples that have been generated already 
satisfy Z = z.

Ratio likelihood weighting
Now, coming to the problem of computing the conditional probability P(y|e), we 
can use ratio likelihood weighting. We compute P(y|e) using the chain rule as 
( ) ( ), /P y e P e . To compute P(y, e) and P(e), we carry out unnormalized sampling 

twice, once to generate M particles for P(y, e) and then to generate M ′  particles for 
P(e). Then, we use the following equation:

( ) ( )
( )

[ ]

[ ]
1

1

ˆ ,ˆ | ˆ

1

1

D
D

D

M

m

M

m

P y e
P y e

P e

w m
M

w m
M

′

=

′

=

=

=

′

∑
∑

Normalized likelihood weighting
Ratio likelihood weighting allowed us to compute the probability of a single 
query P(y|e), but in a case where we want to compute multiple queries or a joint 
distribution P(Y|e), we could use ratio likelihood weighting for each y Yε . This 
turns out to be computationally very expensive, so we generally use normalized 
likelihood weighting to compute this.
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Markov chain Monte Carlo methods
The LW sampling algorithm correctly samples the posterior of the descendant nodes, 
but for the nondescendants, it samples the prior and tries to fix it with the weightings. 
So, for the case where we have most of the observed nodes as leaves of the network, 
we would be sampling the prior rather than the posterior. We will now discuss an 
algorithm that generates a sequence of samples. The first samples generated may be 
near to the prior, but as we keep on generating samples, it keeps getting closer to the 
posterior. Also, this sampling algorithm works for both Bayesian and Markov networks.

Gibbs sampling
In the Gibbs sampling algorithm, we start by reducing all the factors with the observed 
variables. After this, we generate a sample for each unobserved variable on the prior 
using some sampling method, for example, by using a mutilated Bayesian network. 
After generating the first sample, we iterate over each of the unobserved variables to 
generate a new value for a variable, given our current sample for all the other variables.

Let's take the example of our restaurant model to make this clearer. Assume that we 
have already observed that the cost of the restaurant is high. So, we will have the 
CPDs: ( ) ( ) ( ) ( )0, , | , | ,oP L P Q P c L,Q P N L c . We start by generating our first sample with 
forward sampling, and let's say our first samples are ( ) ( )0 01 1,l l q q= =  and ( )0 0n n=
. We will now iterate over all of our unobserved variables N, L, Q. Starting with N, we 
will sample it from the distribution ( )0 1| ,P N c l . As we are computing the distribution 
over a single variable, we can compute it very easily as follows:

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )
( )

1 1 0 1 1 1 0
0 1

1 1 0 1 1 1 0

1 0

1 0

| , | ,
| ,

| , | ,

| ,
| ,

n

n

P l P q P c l q P N l c
P N c l

P l P q P c l q P n l c

P N l c
n l c

Φ =

=

∑

∑

Now that we have sampled ( )1n  from the distribution ( )0 1| ,P N c lΦ , we continue 
with the iteration and sample L by conditioning the distribution with the new sample 
value of N, ( )1n . Similarly, we go on generating samples.
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The thing to notice here is that unlike forward sampling, when sampling here we 
are taking into consideration the evidences, although this method will not give the 
true posterior as we began sampling from the prior distribution. Yet, considering the 
evidence, we are able to generate samples that are much closer to the posterior, and 
the repetition of this method enables us to keep generating samples that get closer to 
the posterior distribution.

In the later sections, we will formalize this concept using the Markov chain Monte 
Carlo method. Using this method, we will be able to generate samples that will be 
much closer to the posterior distribution.

Markov chains
In the case of graphical models, Markov chains are a graph of states of variables X, 
and the edges represent the probability of transitioning from one state to another. 
So, an edge x x′→  represents the probability of transitioning from the state x to x′ , 
represented by ( )T x x′→ :

Fig 4.20: Markov chain for a drunk man

Let's take the example of a drunk man walking along a road. The position of the 
person on the road can be represented by a random variable. Let's say the person 
started at point 0 and can go ahead to +4 or go behind to -4, but there are walls beyond 
this point, so even if he tries to go beyond these points he will stay at the same point. 
Also, the probability of going either forward or backward is 0.4 and the probability of 
staying in the same position is 0.2, that is, ( )1 0.4T x x→ + = , ( )1 0.4T x x+ → =  and 
( ) 0.2T x x→ =  respectively. Also, ( ) ( )4 4 4 4 0.4 0.2 0.6T T+ → + = − → − = + = as the 

road is blocked by the walls.

We can consider the position of the man at any given time t to be a random variable 
represented by ( )tX . This can be computed as follows:

( ) ( )( ) ( )

( )

( )( ) ( )1 1t t t t

x Val X
P X x P X x T x x+ + ′ ′= = = →∑

ε
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Putting the earlier equation in words, we can say that the probability of the  
person being at point x′  at some time (t + 1) is equal to the sum over all the  
states ( )x Val Xε  of the product of that person being in that state x and then 
transitioning to state x′  from x.

Let's now try computing a few probability values for the man's position. We know 
that the man started from the point 0, so at time t = 0, ( )( )0 0 1P X = = . Now, at time  
t = 1, the probability of the man being at point 0 is ( )( )1 0 0.2P X = = , and the probability 
of being at +1 or -1 is ( )( ) ( )( )1 11 1 0.4P X P X= + = = − = . Moving on, at time t = 2, the 
probability of the man being at point 0 is ( )( )2 0 0.2 0.2 0.4 0.4 0.4 0.4 0.36P X = = ∗ + ∗ + ∗ = , 
point +1 or -1 is ( )( ) ( )( )2 21 1 0.4 0.2 0.2 0.4 0.16P X P X= + = = − = ∗ + ∗ = , and point +2 or -2 is 

( )( ) ( )( )2 22 2 0.4 0.4 0.16P X P X= + = = − = ∗ = . We can now see that the probability  
of being at different states spreads with each time instance, and finally, we will  
reach a uniform distribution.

To sample from the Markov chain, we can simply select states at each instant of time 
using the distribution for that instance. However, Markov chains are not a very good 
method if we want to sample from a uniform distribution, because for the range 
[ ],K K− , it takes on average 2K  steps to reach the uniform distribution. So now, 
let's try to find out when a Markov chain converges and what the distribution on 
convergence is.

To make the computation simpler, let's take an example of a similar, but much 
smaller network, as shown in Fig 4.21:

Fig 4.21: An example of a Markov chain
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At equilibrium, we can say that for any state x′ , ( )1tP +  should almost be equal to ( )tP :

( )( ) ( )( ) ( )( )
( )

( )1

Va

t

l

t

x X

tP X x P X x P X x T x x+′ ′ ′= = = ≈ = →∑
ε

At equilibrium, the distribution is known as stationary distribution and is 
represented by ( )Xπ . We can easily show this as follows:

( ) ( )
( )

( )
x Val X

X x X x T x xπ π′ ′= = = →∑
ε

Now, let's try to compute the stationary distributions for the Markov chain in Fig 
4.21. We can write the following equations:

( ) ( ) ( )1 2 30.6 0.5x x xπ π π= ∗ + ∗

( ) ( ) ( )2 1 20.7 0.4x x xπ π π= ∗ + ∗

( ) ( ) ( )3 1 30.3 0.5x x xπ π π= ∗ + ∗

For this to be a legal distribution, it should also satisfy:

( ) ( ) ( )1 2 3 1x x xπ π π+ + =

We can now easily solve this set of equations to get the following results:

( )1 0.3615xπ =

( )2 0.4217xπ =

( )3 0.2168xπ =



Approximate Inference

[ 152 ]

In this case, we got a unique solution for the distributions, but in general, we cannot 
guarantee that we will always get a converged distribution. For a finite state Markov 
chain, we can verify the Markov chain for the following two conditions to check if 
the distributions converge:

• It is possible to get from any state to another state using a positive  
probability path

• For each node, there is a single-step positive probability path to get back to it, 
that is, a self-loop with positive probability

These two conditions are usually sufficient but not necessary to guarantee 
convergence in the distribution.

The multiple transitioning model
We saw how Markov chains work in cases where we have a single random variable. 
However, in the case of graphical models, we have multiple variables, and each state of 
the Markov chain is an assignment to multiple variables. So in this case, it is convenient 
to decompose our transitioning model so that there is change only in a single variable 
in each transition. We can extend our drunk man example to understand this better. 
So now, consider that the man can now go ahead and back as well as left and right. 
To represent this case with our transitioning model, a pair of random variables will 
represent the X and Y positions for each state of the Markov chain.

In such cases, we define multiple transitioning models, and each such transitioning 
model is known as a kernel. Now, to construct the Markov chain from these sets of 

kernels, we can select a kernel 
iT  with a probability 

1
k . We could also simply  

cycle over each of the kernels. However, as we are using different kernels for 
transitions, our Markov chain can't be homogeneous. To solve this problem, we 
assume that each transition of the original Markov chain is a combination of k 
transitions of these kernels.

Using a Markov chain
So far, we have been discussing constructing Markov chains. In this section, we will 
see how to apply these concepts in the case of our graphical models. In the case of 
probabilistic models, we usually want to compute the posterior probability P(Y|E 
= e) , and to sample this posterior distribution, we will have to construct a Markov 
chain whose stationary distribution is P(Y|E = e). So, the states of this Markov chain 
should be instantiations x of variables Yχ −  and should converge to ( )Yπ χ − .
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So, for a state ( ),i ix x−  in the Markov chain, we define the kernel iT  as follows:

( )( )( ) ( ), , |i i i i i i iT x x x x P x x− − −′ =

We can see that this transition probability doesn't depend on the current value of 

ix  of 
iX  but only on the remaining state ix− . Now, it's really easy to show that the 

posterior distribution ( ) ( )|P X P eχΦ =  is a stationary distribution of this process.

In graphical models, Gibbs sampling can be very easily implemented in cases where 
we can compute the transition probability ( )|i iP X x−  efficiently. We already know 
the following:

( )

( ) ( )
: :

1

1

i j i j

j j
j

j j j j
j X D j X D

P D
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D D
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Φ =

=

∏
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ε ε

Let ,j ix −  denote the assignment in ix−  to { }j iD X− , noting that when ,,i j j iX D x −/ε  is 
a full assignment to jD . We can now derive the following:
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Here, we can see that ( ),,i j iP x x −′  only requires the factors involving iX  and also 
vdepends only on the instantiations of the variable ix−  of the Markov blanket of iX . 
Similarly, in the case of Bayesian networks, this value depends only on the CPDs of iX  
and its children.

Collapsed particles
So far, we have discussed various techniques to sample using full instantiations over 
the variables. However, the problem with full instantiations is that they can only 
cover a very small region of the space, as the space is exponential to the number of 
variables. The solution to this is to have partial instantiations of the variables and use 
a closed-form representation of a distribution over the rest. Collapsed particles are 
also known as Rao-Blackwellized particles.

So, considering pX χ⊂  as the set of variables over which we will do the 
assignments and which the particle will depend on, and 

dX χ⊂  as the set of 
variables over which we define a closed-form distribution, if we want to estimate 
the expectation of some function ( )f ξ  relative to our posterior distribution 
( ), |p dP X X e  we have the following:

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )( ) ( )

|
,

| ,

, | , |

| | , , |

| | , |

p d

p d

d p
p

p d p dP e f
x x

p d p p d
x x

p p dP X x e
x

E P x x e f x x e

P x e P x x e f x x e

P x e E f x X e

ξ ξ⎡ ⎤⎣ ⎦
=

=

=

∑

∑ ∑

∑

Also, we are assuming that the internal expectation can be computed easily. So 
essentially, we are using a hybrid approach in the case of collapsed particles. 
We generate particles px  for the variables pX  and do the exact inference for the 
variables in dX . In the case when we have pX χ= , then we get to the case of full 
particles. Similarly, when 0pX = , we get to the case of exact inference. Also, as we 
are doing exact inference on dX , we are eliminating any bias or variance introduced 
because of the variables. Therefore, when pX  is small enough, we are able to get 
much better results using a smaller number of particles.
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Collapsed importance sampling
In the case of full particles for importance sampling, we used to generate particles 
from another distribution, and then, to compensate for the difference, we used to 
associate a weighting to each particle. Similarly, in the case of collapsed particles, we 
will be generating particles for the variables pX  and getting the following dataset:

[ ] [ ] [ ]( )( )
1

, , | ,
M

p d p m
D x m w m P X x m e

=
=

Here, the sample [ ]px m  is generated from the distribution Q. Now, using  
this set of particles, we want to find the expectation of ( )f ξ  relative to the 
distribution ( )|P eξ :

( )
[ ] [ ]( ) [ ]( )( )

[ ]
| ,1

1

, ,
ˆ d p

M
p dP X x m em

D M

m

w m E f x m X e
E f

w m
=

=

⎡ ⎤⎣ ⎦
=
∑

∑

Fig 4.22: The late-for-school model
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Let's take an example using the late-for-school model, as shown in Fig 4.22. Let's 
consider that we have the evidence that 0j , 1q , and partition the variables as 

{ },PX A R=  and { }, , ,DX G L J Q= . So, we will generate particles over the variable 

PX . Also, each such particle is associated with the distribution ( )0 1, | , , ,P G L a r j q
. Now, assuming some query (say ( )0 0 1| ,P l j q ), our indicator function will be 
( )0 0 1| ,P l j q . We will now evaluate for each particle:

( ) { } ( )0 1
0 0 0 1

, | , , ,
1 | , , ,

P G L a r j q
E L l P l a r j qξ⎡ ⎤< >= =⎣ ⎦

After this, we will compute the average of these probabilities using the weightings of 
the samples.

Now, the question is, how do we define the distribution Q and find the weightings 
for the particles?. We begin by partitioning the evidence variables into two parts, 
namely pE  and dE , where p pE E X= ∩  and 

d dE E X= ∩ . As the collapsed 
importance sampling was a hybrid process, we deal with the evidence accordingly, 
using 

pE  as evidence in importance sampling and 
dE

 as evidence in exact inference.

Let's consider an arbitrary distribution Q:

( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( )

|
,

, | , ,

|
| , , ,

p d

p d

p d p dP e
x x

p
p d p p d

x xp

E f P x x e f x x e

P x e
Q x P x x e f x x e

Q x

ξ ξ =

=

∑

∑ ∑

Using this, we can reformulate ( )|pP x e  as follows:

( ) ( )
( )
( )

( )

( ) ( ) ( )

,
|

, ,

1 , | ,

p
p

p p d

p p d p p

P x e
P x e

P e

P x e e
P e

P x e P e x e
P e

=

=

=
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Let's put this result back into the previous equation:

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( )
( ) ( ) ( ) ( )

|

| ,

,1 | , | , , ,

,1 | , , ,

p d

p d p

p p
p d p p d p p dP e

x xp

p p
d p p p dQ X P x x e

p

P x e
E f Q x P e x e P x x e f x x e

P e Q x

P x e
E P e x e E f x x e

P e Q x

ξ ξ =⎡ ⎤⎣ ⎦

⎡ ⎤
⎡ ⎤= ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

∑ ∑

From the preceding equation we get the following:

( ) ( )
( ) ( ),

| ,p e
p d p p

p

P x x
w x P e x e

Q x
=

Now, computing the mean of importance weights, we get the following estimator:

( ) ( ) ( ) ( )
( ) ( )

( ) ( )

( ) ( )

|
| ,

| | ,

, , ,

P
p

p

p

p p
P p d p pQ X

x p

p p d p p
x

d p p d p
x

P x e
E w X Q x P e x e

Q x

P x e P e x e

P e x e P e e

=⎡ ⎤⎣ ⎦

=

= =

∑

∑

∑
So, we get the final equation as follows:

( ) ( )
( ) ( ) ( ) ( )

( ) ( )
| ,

|

, ,
P d p

P

P p dQ X P x x e

P e
PQ X

E w X E f x x e
E f

E w Xξ ξ
⎡ ⎤⎡ ⎤⎣ ⎦⎢ ⎥⎣ ⎦=

⎡ ⎤⎣ ⎦

In the preceding discussion, we didn't place any restriction on the selection of the 
distribution Q. The two main points to consider for the selection of the distribution Q 
are as follows:

• It should be easy to generate samples from this distribution.
• It should be similar to our target distribution ( )|pP X e .
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In the case of collapsed particles, we will generate particles from the distribution 
( )pQ X . However, as we saw in the case of full particles, we had to sample over the 

variable's parents before sampling the variable. In the case of collapsed particles, it 
is quite possible that the parents of a variable are not in pX . The simplest solution 
to this problem is to construct the set 

PX  in such a way that for every PX Xε , 
X PPar Xε  holds as well. To do this, we must use a simple approach to start with the 

nodes having no parents, include them in , and then work downwards from there.

Summary
In this chapter, we discussed different ways of performing approximate inference 
in graphical models, such as cluster graph belief propagation, propagation using 
approximate messages, and inference based on the concepts of sampling from the 
model. In cluster graph belief propagation, we relaxed the constraint of having a 
clique tree, and instead, performed belief propagation on the cluster graph. In the 
propagation using approximate messages, instead of relaxing the constraints on the 
structure of the graph, we tried to approximate the messages passed between the 
clusters. Next, we discussed  sampling methods in detail. There are two different ways 
of sampling. The first includes full particles, where each sample has instantiations 
of all the variables of the network. The other method consists of collapsed particles, 
where each sample is an instantiation of a subset of the network's variables. We also 
discussed the problems we face in the case of full particles. In full particles, a very 
small part of the complete space is covered using each sample, due to which we need 
many more samples than in the case of collapsed particles. We also discussed the 
Markov chain Monte Carlo methods that are extensively used in practical problems.

In the next chapter, we will discuss parameter estimation in the case of Bayesian 
networks. This will help us create graphical models using the data we have.
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Model Learning – Parameter 

Estimation in Bayesian 
Networks

So far in our discussion, we have always considered that we already know the 
network model as well as the parameters associated with the network. However, 
constructing these models requires a lot of domain knowledge. In most real-life 
problems, we usually have some recorded observations of the variables. So, in this 
chapter, we will learn to create models using the data we have.

To understand this problem, let's say that the domain is governed by some underlying 
distribution, *P . This distribution is induced by the network model, ( )* *, *M K θ=
. Also, we are provided with a dataset, [ ] [ ] [ ]{ }1 , 2 ,...,D d d d M=  of M samples. As these 
data points are obtained from our observations of the actual model, we can say that 
these data points have been sampled from the distribution, *P . Also, we can assume 
that all the data samples have been independently sampled from the distribution,  
*P . Such data samples are known as independently and identically distributed  

(IID) samples.

Now, we want to select a model from the family of models over the given variables, 
such that this model, M% , induces the probability distribution, MP % , and this 
distribution is close to the underlying distribution of our domain.
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In this chapter, we will discuss the following topics:

• General ideas in learning
• Maximum likelihood parameter estimation
• Bayesian parameter estimation
• Maximum likelihood structure learning
• Bayesian structure learning

General ideas in learning
Before we discuss the specific methods to learn in the graphical models, in this 
section, we will briefly discuss some general ideas related to learning.

The goals of learning
The perfect solution to our learning task would be to find a model, M% , so that the 
probability distribution induced by it is the same as the underlying distribution of 
our data. However, this is never possible in real life because of computational costs 
and lack of data. So, as we can't find the exact underlying distribution, we try to 
optimize our learning task, depending on the goal of learning. To make it clearer, 
we can think of two different situations. Let's say in the first case, we want to learn 
the model to answer conditional queries over some specific variables, whereas in 
the second case, we want to answer multiple queries involving all the variables of 
the network. Therefore, in the first case, we would like to optimize our learning over 
variables, over which we want to answer queries at the cost of getting a less-accurate 
distribution over the other variables. However, in the second case, we want our 
learned model to be as close to the underlying model as possible, because we have to 
answer queries over all the variables. Hence, we see that our goal of learning has a 
huge effect on our learning task.

Density estimation
One of the most common reasons to learn a graphical model is the inference tasks. In 
this case, we would like our learned model, M% , to induce a distribution, 

MP % , which 
is as close to the underlying distribution as possible. To measure the distance between 
these two distributions, we can use the following relative entropy distance measure:
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However, the problem with this measure is that we also need to know *P  to compute 
the relative entropy. To solve this problem, we simplify the equation as follows:

( ) ( )
( )

( ) ( )
( ) ( )

( ) ( )

| | log

log log

log log

log

P

P

P P

P P

P
D P P E

P

E P P

E P E P

H X E P

ξ

ξ

ξ ξ

ξ

ξ
ξ

ξ ξ

ξ ξ

ξ

⎡ ⎤⎛ ⎞
′ = ⎢ ⎥⎜ ⎟⎜ ⎟′⎢ ⎥⎝ ⎠⎣ ⎦

′= −⎡ ⎤⎣ ⎦
′= −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

′= − − ⎡ ⎤⎣ ⎦

∼

∼

∼ ∼

∼

Here, we see that the first term depends only on *P , and hence, it is unchanged for 
any choice of model. Therefore, we ignore this term and compare our models only 
on the basis of the second term, ( )* logPE Pξ ξ⎡ ⎤⎣ ⎦

% , and prefer the models that make this 
term as large as possible. This term is commonly known as expected log-likelihood. 
This term encodes the probability of our model to generate the given data points. 
Therefore, for a model that has high likelihood value for some given data, it would 
be closer to our underlying distribution of the data.

So, in our learning problem, we are interested in the likelihood of the data, when  
a model is given, M, that is, ( )|P D M . For our convenience, we usually use  
log-likelihood denoted as ( ) ( )| log |l D M P D M= . We also define log-loss as the 
negative of log-likelihood. Log-loss is an example of a loss function. A loss function, 

( )|loss Mξ , determines the loss that our model makes on a particular data point, ξ
. Therefore, for better learning, we try to find a model that minimizes the expected 
loss, also known as risk:

! "* |
P

E loss M# #$ %& '!

However, as *P  is not known, we can approximate this expected loss by averaging 
over the sampled data points:

( ) ( )1| |D
D

E loss M loss M
D ξ

ξ ξ=⎡ ⎤⎣ ⎦ ∑
ε
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Taking the example of log-loss and considering a data set, [ ] [ ] [ ]{ }1 , 2 ,...,D Mξ ξ ξ= , we 
have the following equation:

( ) ( )
1

|
M

m
P D M P m Mξ

=

=∏

Taking the logarithm of the preceding expression, we get the following equation:

( ) ( )
1

log | log
M

m
P D M P m Mξ

=

=∏

As we saw earlier, this term is the negative of the empirical log-loss. Hence, we can 
easily get a good intuition of empirical risk using log-loss as the loss function.

Predicting the specific probability values
In the preceding section, we tried to learn the complete underlying probability 
distribution, *P . For this, we used the log-likelihood function to select the most 
accurate model. The log-likelihood function uses complete assignments to compute 
the probability of how likely it is for the data represented by our model. Thus, 
models learned in this way can be used to answer a whole range of conditional or 
marginal probability queries over the variables of the model.

In many cases, though, we are more interested in answering a single conditional 
probability. Let's take the example of a simple classification problem using the Iris 
dataset for the classification of flower species. We are provided with five variables, 
namely sepallength, sepalwidth, petallength, petalwidth, and flowerspecies. 
Now, we want to predict the species of a flower using the sepal length, sepal 
width, petal length, and petal width of a given flower. So, in this case, we always 
want to answer a specific conditional distribution over the variables, that is, 
( )| , , ,P flowerspecies sepallength sepalwidth petallength petalwidth . Rather in this case, 

we are interested in the MAP queries over the variable, flowerspecies, when all the 
other variables are given. In real life, we have a lot of problems like this where we 
want to answer only some specific queries from our learned model.

Therefore, in such cases, we can select a different loss function that would better 
represent our problem. For example, in this case, we can use a classification error, 
also known as the 0/1 error:

! " ! "# $,
1

x y P P
E h x y% &'( )! !

"



Chapter 5

[ 163 ]

Here, ( )1 .  is an indicator function; ( )Ph x%  represents the predicted value using the 
hypothesis, Ph % ; and y is the actual or target value.

In simple terms, this error function simply computes the probability over all  
terms sampled from P% , for which our model selects the wrong label. This error 
function is good for the case when we want to predict a single variable, or maybe a 
couple of variables. However, in cases when we want to predict a large number of 
variables, let's say in the case of image segmentation, we would not like to penalize 
the whole model for wrongly predicting the value of a single pixel. One suitable 
error function in such cases is Hamming loss, which also does consider the number 
of variables in each prediction that were predicted wrong.

Therefore, if we know in advance that we are going to use our model for a specific 
prediction task, we can always optimize our model for those variables.

Knowledge discovery
Another problem that we might want to tackle through learning is that of knowledge 
discovery, in which we would like to know the relationships between the variables. 
So, in this case, we mostly focus on predicting the correct network structure. Though, 
as it turns out, it is very difficult to achieve this with good confidence. So, in the 
cases where we have a large amount of data, we may be able to construct a network 
structure with good confidence. In the case of Bayesian networks, there are a lot of 
I-equivalent structures for any given structure. Therefore, we can at the best hope 
to learn an I-equivalent structure from the data. Now, coming to the case when we 
don't have enough data, we will not be able to say anything very confidently about 
the relationship between the variables. For example, let's say that our data shows a 
weak correlation between two variables, but as we don't have enough data, we can't 
confirm this as it might be due to some noise in our data.

Thus, we can conclude that in the case of a knowledge discovery task, the most 
important thing is to focus on the confidence with which we predict the network 
structure. In the later sections, we will discuss how to approach such problems.

Learning as an optimization
In the previous sections, we saw various ways of evaluating our models and also 
defining the loss functions that we want to minimize. This suggests that a learning 
task can be viewed as an optimizations problem. In an optimization problem, we  
are provided with a hypothesis space, which in this case, is the set of all possible 
models along with an objective function, on the basis of which we will select the  
best-representing model from the hypothesis space. In this section, we will discuss 
the various choices of objective functions and how they affect our learning task.
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Empirical risk and overfitting
Let's consider the task of selecting a model, M, which optimizes the expectation 

of some loss function, ! "* |
P

E loss M# #$ %& '!

. As we don't know the value of *P , we 
generally use the dataset, D, which we have to get an empirical estimate of the 
expectation. Using D, we can define an empirical distribution, 

D̂P , as follows:

( ) [ ]{ }1ˆ 1D
m

P A m A
M

ξ= ∑ ε

Putting this in simple words, for some event, A, we assign its probability to be the 
number of times we have seen this event in our samples. Therefore, as we have more 
and more samples from the original distribution, *P , the value of ( )D̂P A  keeps 
getting closer and closer to the original distribution.

However, there are a few drawbacks to this approach that we need to keep in mind 
to avoid getting poor results. Think of a case when we have a lot of variables in the 
network, let's say n. Considering that all the variables can only take two different 
states, our joint distribution over these variables will have 2n  different assignments. 
Now, let's say that we are provided with 1000 distinct samples from the original 
distribution. If we try to find the empirical distribution using this data, we will be 
assigning a probability of 0.001 to each of the 1000 assignments that were given to 
us and will assign 0 to the rest 2 1000n −  assignments. In real life, we want to predict 
over new data using our learned model, and it is highly possible that our training 
data doesn't have all the possible events. In such cases, our trained model will overfit 
to the training data as it assigns 0 probability to all the events that are not present in 
the training data.

So, to avoid overfitting, we can limit our hypothesis space to simpler models. This 
leads to yet another problem; with limited hypothesis space, we might not be 
able to find a model that will fit perfectly into the original distribution, even if we 
are provided with infinite data. This type of limitation in learning introduces an 
inherent error in the learning model, which is known as bias. Conversely, if we 
have a hypothesis space with more complex models, we can correctly learn the 
actual distribution, *P . In that case, if we also have less data, we will get too many 
fluctuations in our predictions. As a result, we will have a learned model with  
high variance.

In conclusion, we will always have a trade-off between the bias and variance in our 
learned models. However, with very limited data, variance turns out to be more 
dangerous, as it is not able to learn the actual distribution, *P , at all.
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Discriminative versus generative training
Until now, we have been trying to learn the model to predict all the variables. This 
kind of learning is known as generative learning, as we are trying to generate all the 
variables, the ones we are trying to predict as well as the ones that we want to use 
as features. However, as we discussed earlier, in many cases, we already know the 
conditional distribution that we want to predict. So, in such cases, we try to predict 
a model so that ( )|P X Y%  is as close as possible to ( )* |P X Y . This is known as 
discriminative learning.

Learning task
As discussed in the previous sections, we must formalize our learning task. The 
inputs for our learning task are as follows:

• Constraints for our model, M% , which will be used to define our  
hypothesis space

• A set of independent and identically distributed samples, 
[ ] [ ] [ ]{ }1 , 2 ,...,D d d d M= , from the original distribution, 

The output of our learning will either be the network structure, the parameters, or 
both. Let's discuss all these in a bit more detail.

Model constraints
Our definition of a hypothesis space depends on several factors. One of the most 
important factors is the problem that we are trying to solve. There are various kinds 
of problems that we might face. So, in some cases, we might already know the 
network structure and might just want to learn the parameters of the network. In 
some other cases, it is also possible that we want to learn both, the network structure 
as well as the parameter of the network. Or, it is also possible that we don't even 
know all the variables of the model that we are trying to learn. In general, the lesser 
the information we have, the more we have to consider a wider hypothesis space 
because we need to consider more models to find the one that is the closest.

Other than this, we also discussed how the constraints on the hypothesis space 
affect the bias and variance in the learned model. One more thing to consider while 
defining the hypothesis space is the cost of computation, as in a hypothesis space 
having more complex models, it is generally more difficult to find an optimal model.
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Data observability
One other condition that affects our learning task is the extent of observability of our 
training data. In some cases, it is possible that we might not have the complete data 
over all the variables, or we might have hidden variables in the actual model, and 
hence, they may never have been observed.

In many real-life situations, it is not possible to measure all the variables of our 
model. In such cases, dealing with missing data is critical. We can take the example 
of designing a model to diagnose a disease in a patient based on some tests. In this 
case, we can't do all the tests on a patient. Also, we can't say with certainty which 
disease he has.

Parameter learning
In the previous sections, we have been discussing the general concepts related 
to learning. Now, in this section, we will be discussing the problem of learning 
parameters. In this case, we will already know the networks structure and we will 
have a dataset, [ ] [ ] [ ]{ }1 , 2 ,...,D Mξ ξ ξ= , of full assignment over the variables.  
We have two major approaches to estimate the parameters, the maximum likelihood 
estimation and the Bayesian approach.

Maximum likelihood estimation
Let's take the example of a biased coin. We want to predict the outcome of this coin 
using previous data that we have about the outcomes of tossing it. So, let's consider 
that, previously, we tossed the coin 1000 times and we got heads 330 times and got 
tails 670 times. Based on this observation, we can define a parameter, θ , which 
represents our chances of getting a heads or a tails in the next toss. In the most 
simple case, we can have this parameter, θ , to be the probability of getting a heads 
or tails. Considering θ  to be the probability of getting a heads, we have 0.33θ =
. Now, using this parameter, we are able to have an estimate of the outcome of our 
next toss. Also, as we increase the number of data samples that we used to compute 
the parameter, we will get more confident about the parameter.
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Putting this all formally, let's consider that we have a set of independent and 
identically distributed coin tosses, [ ] [ ] [ ]{ }1 , 2 ,...,D Mξ ξ ξ= . Each [ ]iξ  can either 
take the value heads, (H), with the probability, θ , or tails, (T), with probability, 
( )1 θ− . We want to find a good value for the parameter, θ , so that we can predict the 
outcomes of the future tosses. As we discussed in the previous sections, we usually 
approach a learning task by defining a hypothesis space, Θ , and an optimization 
function. In this case, as we are trying to get the probability of a single random 
variable, we can define our hypothesis space as follows:

[ ]0,1Θε

Now, let's take an example that we have, namely { }, , , , , , ,D T H H T T T H T= . When 
the value of θ  is given, we can compute the probability of observing this data. 
We can easily say that [ ]( ) ( )1 1P D T θ= = − . Also, [ ]( )2P D H θ= = , as all the 
observations are independent. Now, consider the following equation:

( ) ( ) ( )( )( ) ( )
( )53

| 1 1 1 1 1

1

P D θ θ θθ θ θ θ θ θ

θ θ

= − − − − −

= −
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This is the probability of our data to conform with our parameter, θ , which is also 
known as the likelihood, as we had discussed in the earlier section. Now, as we 
want our parameter to agree with the data as much as possible, we would like the 
likelihood, ( )|P D θ , to be as high as possible. Plotting the curve of ( )|P D θ  within 
our hypothesis space, we get the following curve:

Fig 5.1: Curve showing the variation of likelihood with θ
From the curve in Fig 5.1, we can now easily see that we get the maximum likelihood 
at 0.4θ = .

Now, let's try to generalize this computation. Also, let's consider that in our dataset, 
we have HM  number of heads and TM  number of tails:

[ ]{ }
0
1

M

H
i

M D i H
=

= =∑

[ ]{ }
0
1

M

T
i

M D i T
=

= =∑

From the example we saw earlier, we can now easily derive the following equation:

( ) ( )| 1 TH
MMP D θ θ θ= −
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Now, we would like to maximize this likelihood to get the most optimum value  
for θ . However, as it turns out it, it is much easier to work with log-likelihood, 
and as log-likelihood is monotonically related to the likelihood function, the 
optimum value of θ  for the likelihood function would be the same as that for the 
log-likelihood function. So, first taking the log of the preceding function, we get the 
following equation:

( ) ( )log | log log 1H HP D M Mθ θ θ= + −

To find the maxima, we now take the derivative of this function and equate it to 0. 
We get the following result:

( ) 0ˆ ˆ1
H TM M
θ θ

− =
−

ˆ H

H T

M
M M

θ =
+

Hence, we get our maximum likelihood parameter for the generalized case.

Maximum likelihood principle
In the preceding section, we saw how to apply the maximum likelihood estimator in 
a simple single variable case. In this section, we will now discuss how to apply this 
to a broader range of learning problems and how to use this to learn the parameters 
in the case of a Bayesian network.

Now, let's define our generalized learning problem. We assume that we are provided 
with a dataset, [ ] [ ] [ ]{ }1 , 2 ,...,D Mξ ξ ξ= , containing the IID samples over a set of 
variables, χ . We also assume that we know the sample space of the data, that is, we 
know the variables and the values that it can take. For our learning, we are provided 
with a parametric model, whose parameters we want to learn. A parametric model 
is defined as a function, ( )|P ξ θ , that assigns a probability to ξ , when a set of 
parameters is given, θ . As this parametric model is a probability distribution, it 
should be non-negative and should sum up to 1:

( )| 1P
ξ

ξ θ =∑
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As we have defined our learning problem, we will now move on to applying our 
maximum likelihood principle on this. So, first of all, we need to define the parameter 
space for our model. Let's take a few examples to make defining the space clearer.

Let's consider the case of a multinomial distribution, P, which is defined over a set  
of variables, X, and can take the values, 1 2, ,..., Kx x x . The distribution is represented 
as θ Rε :

( )| k
kP x if x xθ θ= =

The parameter space, Θ , for this model can now be defined as follows:

[ ]0,1 | 1K
i

i
θ θΘ = =∑ε

We can take another example of a Gaussian distribution on a random variable, X, 
such that X can take values from the real line. The distribution is defined as follows:

( )
( )2

221| ,
2

x

P x e
µ
σµ σ

π

−
−

=

For this model, our parameters are µ  and σ . On defining θ  = ,µ σ< > , our 
parameter space can be defined as +Θ = ×R R .

Now that we have seen how to define our parameter space, the next step is to define 
our likelihood function. We can define our likelihood function on our data, D, as 
( )|P D θ  and it can be expressed as follows:

( ) [ ]( )| |
m

P D P mθ ξ θ=∏

Now, using the earlier parameter space and likelihood functions, we can move 
forward and compute the maxima of the likelihood or log-likelihood function to find 
the most optimal value of our parameter, θ . Taking the logarithm of both sides of 
the likelihood function, we get the following equation:

( ) [ ]( ) [ ]( ) [ ]( )log | log 1 | log 2 | ... log |P D P P P Mθ ξ θ ξ θ ξ θ= + + +
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Now, let's equate this with 0 to find the maxima:

[ ]( )( ) [ ]( )( ) [ ]( )( )log 1 | log 2 | ... log | 0P P P Mξ θ ξ θ ξ θ+ + + =

We can then solve this equation to get our desired θ .

The maximum likelihood estimate for 
Bayesian networks
Let's now move to the problem of estimating the parameters in a Bayesian network. 
In the case of Bayesian networks, the network structure helps us reduce the 
parameter estimation problem to a set of unrelated problems, and each of these 
problems can be solved using techniques discussed in the previous sections.

Let's take a simple example of the network, X Y→ . For this network, we can think 
of the parameters, 0xθ  and 1xθ , which will specify the probability of the variable X; 

1 0|y xθ  and 0 0|y xθ , which will specify the probability of ( )| 0P Y X = , and 1 1|y xθ  and 0 1|y xθ  
representing the probability of ( )| 0P Y X = .

Consider that we have the samples in the form of [ ] [ ]( ),x m y m , where [ ]x m  
denotes assignments to the variable, X, and [ ]y m  denotes assignments to the 
variable, Y. Using this, we can define our likelihood function as follows:

( ) [ ] [ ]( )
1

| , |
M

m
P D P x m y mθ θ

=

=∏

Utilizing the network structure, we can write the joint distribution, P(X, Y), as follows:

( ) ( ) ( ), |P X Y P X P Y X= ×
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Replacing the joint distribution in the preceding equation using this product form, 
we get the following equation:

( ) [ ]( ) [ ] [ ]( )

[ ]( ) [ ] [ ]( )

1

1 1

| | | ,

| | ,

M

m

M M

m m

P D P x m P y m x m

P x m P y m x m

θ θ θ

θ θ

=

= =

=

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∏

∏ ∏

So, we see that the Bayesian network's structure helped us decompose the likelihood 
function in simpler terms. We now have separate terms for each variable, each 
representing how well it is predicted, when its parents and parameters are given.

Here, the first term is the same as what we saw in previous sections. The second term 
can be decomposed further:

[ ] [ ]( )|
1

| ,
M

Y X
m
P y m x m θ

=

=∏

[ ] [ ]( )
[ ]

[ ] [ ]( )
[ ]0 1

| |
: :

| , | ,Y X Y X
m x m x m x m x

P y m x m P y m x mθ θ
= =

= ⋅∏ ∏

[ ] [ ]( )
[ ]

[ ] [ ]( )
[ ]

0 1
0 1

| |
: :

| , | ,Y x Y x
m x m x m x m x

P y m x m P y m x mθ θ
= =

= ⋅∏ ∏

Thus, we see that we can decompose the likelihood function into a term for each 
group of parameters. Actually, we can simplify this even further. Just consider a 
single term again:

[ ] [ ]( )0|
1

| , Y x
m
P y m x m θ

=
∏
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These terms can take only two values. When [ ] 0y m y= , it is equal to 0 0|y xθ , and when 
[ ] 1y m y= , it is equal to 1 0|y xθ . Thus, we get the value, 0 0|y xθ , in cases when [ ] 0x m x=  

and [ ] 0y m y= . Let's denote this number by 0 0,M x y⎡ ⎤⎣ ⎦ . Thus, we can rewrite the 
earlier equation as follows:

[ ] [ ]( )
[ ]

0
0

0 1 0 0

1 0 0 0|
:

, ,
| ,

| |Y x
m x m x

M x y M x y
P y m x m

y x y x
θ θ θ

=

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦= = ⋅∏

From our preceding discussion, we know that to maximize the likelihood, we can set 
the following equation:

1 0

0 1

0 1 0 0|

0 1

0

,
, ,

,

y x

M x y
M x y M x y

M x y
M x

θ
⎡ ⎤⎣ ⎦=

⎡ ⎤ ⎡ ⎤+⎣ ⎦ ⎣ ⎦
⎡ ⎤⎣ ⎦=
⎡ ⎤⎣ ⎦

Now, using this equation, we can find all the parameters of the Bayesian network by 
simply counting the occurrence of different states of variables in the data.

Now, let's see some code examples for how to learn parameters using pgmpy:

In [1]: import numpy as np
In [2]: import pandas as pd
In [3]: from pgmpy.models import BayesianModel
In [4]: from pgmpy.estimators import MaximumLikelihoodEstimator

# Generating some random data
In [5]: raw_data = np.random.randint(low=0, high=2, size=(100, 2))
In [6]: print(raw_data)
Out[6]:
array([[1, 1],
       [1, 1],
       [0, 1],
       ..., 
       [0, 0],
       [0, 0],
       [0, 0]])
In [7]: data = pd.DataFrame(raw_data, columns=['X', 'Y'])
In [8]: print(data)
Out[8]:
     X  Y
0    1  1



Model Learning – Parameter Estimation in Bayesian Networks

[ 174 ]

1    1  1
2    0  1
3    1  0
..  .. ..
996  1  1
997  0  0
998  0  0
999  0  0

[1000 rows x 2 columns]

# Two coin tossing model assuming that they are dependent.
In [9]: coin_model = BayesianModel([('X', 'Y')])
In [10]: coin_model.fit(data, 
                        estimator=MaximumLikelihoodEstimator)
In [11]: cpd_x = coin_model.get_cpds('X')
In [12]: print(cpd_x)
Out[12]:
╒═════╤═════╕
│ x_0 │ 0.46│
├─────┼─────┤
│ x_1 │ 0.54│
╘═════╧═════╛

Similarly, we can take the example of the late-for-school model:

In [13]: raw_data = np.random.randint(low=0, high=2, 

                                      size=(1000, 6))
In [14]: data = pd.DataFrame(raw_data, columns=['A', 'R', 'J',
                                                'G', 'L', ‘Q’])

In [15]: student_model = BayesianModel([('A', 'J'), ('R', 'J'),
                                          ('J', 'Q'), ('J', 'L'),

                                          ('G', 'L')])
In [16]: student_model.fit(data, 
                           estimator=MaximumLikelihoodEstimator)
In [17]: student_model.get_cpds()
Out[17]:
[<TabularCPD representing P(A: 2) at 0x7f9286b1fa113>,
 <TabularCPD representing P(R: 2) at 0x7f9283b12312>,
 <TabularCPD representing P(G: 2) at 0x7f9383b15114>
 <TabularCPD representing P(J: 2 | A: 2, R: 2) at 0x7f9286bw3329>,
 <TabularCPD representing P(Q: 2 | J: 2) at 0x7f92863kj3294>,

 <TabularCPD representing P(L: 2 | G: 2, J: 2) at 

                                           0x7f9282kj49345>]

So, learning parameters from data is very easy in pgmpy and requires just a call to the 
fit method.
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Bayesian parameter estimation
In the preceding section, we discussed the method of estimating parameters using 
the maximum likelihood, but as it turns out, our maximum likelihood method has a 
lot of drawbacks. Let's consider the case of tossing a fair coin 10 times. Let's say that 
we got heads three times. Now, for this dataset, if we go with maximum likelihood, 
we will have the parameter, 0.3headθ = , but our prior knowledge says that this 
should not be true. Also, if we get the same results of tossing with a biased coin, we 
will have the same parameter values. Maximum likelihood fails in accounting for the 
situation where, because of our prior knowledge, the probability of getting a head in 
the case of a fair coin should be more or less than in the case of a biased coin, even if 
we had the same dataset.

Another problem that occurs with a maximum likelihood estimate is that it fails to 
distinguish between the cases when we get three heads out of 10 tosses and when we 
get 30000 heads out of 100000 tosses. In both of these cases, the parameter, headsθ , will 
be 0.3 according to maximum likelihood, but in reality, we should be more confident 
of this parameter in the second case.

So, to account for these errors, we move on to another approach that uses Bayesian 
statistics to estimate the parameters. In the Bayesian approach, we first create a 
probability distribution representing our prior knowledge about how likely are we 
to believe in the different choices of parameters. After this, we combine the prior 
knowledge with the dataset and create a joint distribution that captures our prior 
beliefs, as well as information from the data. Coming back to the example of coin 
flipping, let's say that we have a prior distribution, ( )P θ . Also, from the data, we 
define our likelihood as follows:

[ ]( ) { [ ]
[ ] 1

01| if x m x
if x m xP x m θ

θθ =
− =

=

Now, we can use this to define a joint distribution over the data, D, and the 
parameter, θ :

[ ] [ ] [ ]( ) [ ] [ ] [ ]( ) ( )

( ) [ ]( )

( ) [ ] ( ) [ ]
1

01

1 , 2 ,..., , 1 , 2 ,..., |

|

1

M

m
MM

P x x x m P x x x m P

P P x m

P

θ θ θ

θ θ

θ θ θ
=

=

=

= −

∏
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Here, [ ]1M  is the number of heads in the data and [ ]0M  is the number of tails. 
Using the preceding equation, we can compute the posterior distribution over θ :

[ ] [ ] [ ]( ) [ ] [ ] [ ]( ) ( )
[ ] [ ] [ ]( )

| 1 , 2 ,..., |
| 1 , 2 ,...,

| 1 , 2 ,...,
P x x x M P

P x x x M
P x x x M

θ θ θ
θ

θ
=

Here, the first term of the numerator is known as the likelihood, the second is known 
as the prior, and the denominator is the normalizing factor.

In the case of Bayesian estimation, if we take a uniform prior, it will give the same 
results as the maximum likelihood approach. So, we won't be selecting any particular 
value of  in this case. We will try to predict the outcome of the next coin toss, when 
all the previous data samples are given:

[ ] [ ] [ ] [ ]( )1 1 , 2 ,...,P x M x x x M+ =

[ ] [ ] [ ] [ ]( ) [ ] [ ] [ ]( )1 | , 1 , 2 ,..., | 1 , 2 ,...,P x M x x x M P x x x M dθ θ θ+∫

[ ]( ) [ ] [ ] [ ]( )1 | | 1 , 2 ,...,P x M P x x x M dθ θ θ= +∫

In simple words, here we are integrating our posterior distribution over θ  to find 
the probability of heads for the next toss.

Now, applying this concept of the Bayesian estimator to our coin tossing example, 
let's assume that we have a uniform prior over θ , which can take values in the 
interval, [0, 1]. Then, [ ] [ ] [ ]( )| 1 , 2 ,...,P x x x Mθ=  will be proportional to the 
likelihood, [ ] [ ] [ ]( ) [ ] ( ) [ ]011 , 2 ,..., | 1 MMP x x x M θ θ θ= − . Let's put this value in  
the integral:

( ) [ ] [ ] [ ]( ) [ ] [ ] [ ]( )
[ ] ( ) [ ]011 11 | 1 , 2 ,..., 1

1 , 2 ,...,
MMP X M x x x x M d

P x x x M
θ θ θ θ+ = = ⋅ − ⋅∫
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Solving this equation, we finally get the following equation:

( ) [ ] [ ] [ ]( ) [ ]
[ ] [ ]

1 1 1
1 | 1 , 2 ,...,

1 0 2
M

P X M x x x x M
M M

+
+ = =

+ +

This prediction is known as the Bayesian estimator. We can clearly see from 
the preceding equation that as the number of samples increase, the parameters 
comes closer and closer to the maximum likelihood estimate. The estimator that 
corresponds to a uniform prior is often referred to as Laplace's correction.

Priors
In the preceding section, we discussed the case when we have uniform priors. As 
we saw, in the case of uniform priors, the estimator is not very different from the 
maximum likelihood estimator. Therefore, in this section, we will move on to discuss 
the case when we have a non-uniform prior. We will show an example over our coin 
tossing example, using our prior to be a Beta distribution.

A Beta distribution is defined in the following way:

! " ! " ! " 01
11

1        0, 1Beta if p
##$ # # $ %$ $

&
' &!

Here, 0α  and 1α  are the parameters, and the constant, γ , is a normalizing constant, 
which is defined as follows:

( )
( ) ( )

1 0

1 0

γ
α α
α α

Γ +
=
Γ Γ

Here, the gamma function, ( )xΓ , is defined as follows:

( ) 1
0

.x tx t e dt
∞ − −Γ = ∫
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For now, before we start our observations, let's consider that the hyper parameters, 
0α  and 1α , correspond to the imaginary number of tails and heads. To make  

our statement more concrete, let's consider the example of a single coin toss and 
assume that our distribution, ( ) ( )0 1,P Beta αθ α= . Now, let's try to compute the 
marginal probability:

[ ]( ) [ ]( ) ( )

( )

11 1
0
1

0

1

1 0

1 1 | .P X x P X x P d

P d

θ θ

α
α α

θ

θ θ θ

= = =

= ⋅

=
+

∫
∫

So, this conclusion shows that our statement about the hyper parameters is correct. 
Now, extending this computation for the case when we saw M[1] heads and M[0] 
tails, we get the following equation:

[ ] [ ] [ ]( ) [ ] [ ] [ ]( ) ( )
[ ] ( ) [ ] ( )
[ ] ( ) [ ]

[ ] ( ) [ ]( )

01

01

0

0 111

0 11 1

0 1
1

| 1 , 2 , , x 1 , 2 , , |

1 1

1

1 1 1

MM

MM

M

P x x M P x x x M P

Beta M

αα

αα

α

θ θ θ

θ θ θ θ

θ θ

α θ

−

+ −+ −

+ −

− ⋅ −

= −

= + −

∝

−

∝… …

This equation shows that if the prior distribution is a Beta distribution, the posterior 
distribution also turns out to be a Beta distribution. Now, using these properties, we 
can easily compute the probability over the next toss:

[ ] [ ] [ ] [ ]( ) [ ]11 1
1 | 1 , 2 , ,

M
P X M x x x x M

M
α
α
+

+ = =
+

…
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Here, 
1 0α α α= + , and this posterior represents that we have already seen 

[ ]1 1Mα +  heads and [ ]0 0Mα +  tails.

Bayesian parameter estimation for Bayesian 
networks
Again, let's take our simple example of the network, X Y→ , and our training 
data, [ ] [ ] [ ] [ ] [ ] [ ]{ }1 , 1 , 2 , 2 , , ,D X Y X Y X M Y M= < > < > < >K . We also have 
unknown parameters, Xθ  and |Y Xθ . We can think of a dependency network over 
the parameters and data, as shown in Fig 5.2.

This dependency structure gives us a lot of information about datasets and our 
parameters. We can easily see from the network that different data instances are 
independent of each other if the parameters are given. So, [ ]X m  and [ ]Y m  are 
d-separated from [ ]X m′  and [ ]Y m′  when Xθ  and |X Yθ  are given.

Also, when all the [ ]x m  and [ ]y m  values are observed, the parameters, Xθ  and 
|X Yθ , are d-separated. We can very easily prove this statement, as any path  

between Xθ  and |X Yθ  is in the following form:

[ ] [ ] |X Y XX m Y mθ θ→ → ←

When [ ]X m  and [ ]Y m  are observed, influence cannot flow between Xθ  and 
|Y Xθ . So, if these two parameters are independent a priori then they will also be 

independent a posteriori. This d-separation condition leads us to the following result:

( ) ( ) ( )| |, | | |X Y X X Y XP D P D P Dθ θ θ θ=
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This condition is similar to what we saw in the case of the maximum likelihood 
estimation. This will allow us to break up the estimation problem into smaller and 
simpler problems, as shown in the following figure:

Fig 5.2: Network structure of data samples and parameters of the network

Now, using the preceding results, let's formalize our problem and see how the results 
help us solve it. So, we are provided with a network structure, G, whose parameters 
are θ . We need to assign a prior distribution over the network parameters, ( )P θ .  
We define the posterior distribution over these parameters as follows:

( ) ( ) ( )
( )
|

|
P D P

P D
P D
θ θ

θ =

Here, the term, ( )P θ , is our prior distribution, ( )D |P θ  is the likelihood function, 
( )| DP θ  is our posterior distribution, and P(D) is the normalizing constant.

As we had discussed earlier, we can split our likelihood function as follows:

( ) ( )|D | |
i XiX Pa

i
P P Dθ θ=∏
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Also, let's consider that our parameters are independent:

( ) ( )|i XiX Pa
i

P Pθ θ=∏

Combining these two equations, we get the following equation:

( ) ( ) ( ) ( )| |
1| |

i X i Xi ii X Pa X Pa
i

P D P D P
P D

θ θ θ⎡ ⎤= ⎣ ⎦∏

In the preceding equation, we can see that each of the product terms is for a local 
parameter value. With this result, let's now try to find the probability of a new data 
instance given our previous observations:

[ ] [ ]( ) [ ] [ ]( ) ( )1 , y 1 | 1 , 1 | , |P x M M D P x M y M D P D dθ θ θ+ + = + +∫

As we saw earlier, all the data instances are independent. If the parameter is given, 
we get the following equation:

[ ] [ ]( )
[ ] [ ]( )
[ ]( ) [ ] [ ]( )|

1 , y 1 | ,

1 , y 1 |

1 | 1 | 1 ,X Y X

P x M M D

P x M M

P x M P y M x M

θ

θ

θ θ

+ +

+ +

+ + +

We can also decompose the posterior probability as follows:

[ ] [ ]( )1 , 1 |P x M y M D+ +

[ ]( ) [ ] [ ]( ) ( ) ( )|1 | 1 | 1 , | |X Y X X Y X YP x M P y M x M P D P D d dθ θ θ θ θ θ= + + +∫∫

[ ]( ) ( )( ) [ ] [ ]( ) ( )( )|1 | | 1 | 1 , |X X X Y X Y YP x M P D d P y M x M P D dθ θ θ θ θ θ= + + +∫ ∫

Now, using this equation, we can solve the prediction problem for each of the 
variables separately.
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Now, let's see some examples of the network's learning parameters using this 
Bayesian approach on the late-for-school model:

In [1]: import numpy as np
In [2]: import pandas as pd
In [3]: from pgmpy.models import BayesianModel
In [4]: from pgmpy.estimators import BayesianEstimator

# Generating some random data
In [5]: raw_data = np.random.randint(low=0, high=2, 

                                     size=(1000, 6))
In [6]: print(raw_data)
Out[6]:
array([[1, 0, 1, 1, 1, 0],
       [1, 0, 1, 1, 1, 1],
       [0, 1, 0, 0, 1, 1],
       ..., 
       [1, 1, 1, 0, 1, 0],
       [0, 0, 1, 1, 0, 1],
       [1, 1, 0, 0, 1, 1]])
In [7]: data = pd.DataFrame(raw_data, columns=['A', 'R', 'J',
                                               'G', 'L', 'Q'])

# Creating the network structures
In [8]: student_model = BayesianModel([('A', 'J'), ('R', 'J'),
                                       ('J', 'Q'), ('J', 'L'), 

                                       ('G', 'L')])
In [9]: student_model.fit(data, estimator=BayesianEstimator)
In [10]: student_model.get_cpds()
Out[10]:
[<TabularCPD representing P(A: 2) at 0x7f92892304fa>,
 <TabularCPD representing P(R: 2) at 0x7f9286c9323b>,
 <TabularCPD representing P(G: 2) at 0x7f9436c9833b>,
 <TabularCPD representing P(J: 2 | A: 2, R: 2) at 0x7f9286s23a34>,
 <TabularCPD representing P(L: 2 | J: 2, G: 2) at
                                            
0x7f9286a932b30>,
 <TabularCPD representing P(Q: 2 | J: 2) at 0x7f9286d12904>]

In [11]: print(student_model.get_cpds('D'))
Out[11]:
╒═════╤═════╕

╘═════╧═════╛
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╒═════╤═════╕
│ D_0 │ 0.44│
├─────┼─────┤
│ D_1 │ 0.56│
╘═════╧═════╛

Therefore, to learn the data using the Bayesian approach, we just need to pass the 
estimator type BayesianEstimator.

Structure learning in Bayesian networks
In the previous sections, we considered that we already know the network structure 
and we tried to estimate the parameters of the network using the data. However, 
it is quite possible that we might neither know the network structure nor have the 
domain knowledge to construct the network. Hence, in this section, we will discuss 
constructing the model structure when the data is given.

Constructing the model from the data is a difficult problem. Let's take an example of 
tossing two coins and representing the outcome of the first with the variable, X, and 
the second with the variable, Y. We know that if the coins are fair, these two random 
variables should be independent of each other. However, to get this independence 
condition just from the data, we need to have all these outcomes equal number of 
times in the data that we will rarely see in real life.

So, in general, we need to make some assumptions about the dependencies. The 
assumptions that we make will largely depend on our learning task, as we discussed 
in the previous sections. Now, in the case of knowledge discovery, we would like 
to know the dependencies between the variables; therefore, we would like our 
network structure to be as accurate as possible. We know that each distribution can 
have many P-maps; therefore, the best we can do is get an I-equivalent structure 
of the original network, *G . As we mentioned earlier, it is really hard to get the 
exact network structure, so we will often have a situation where we have to decide 
whether we want to include a less-probable edge in our model or not. Although, if 
we include too many or very few edges, we will end up not learning a good model. 
Therefore, this decision usually depends on our application.

Other than knowledge discovery, we very often use the models for density estimation. 
In this case, we would like to learn a model that should be able to learn the underlying 
probability distribution, *P , using our model, and should be able to make predictions 
over new data points. We may think that in this case, adding less-probable edges to 
the model will help us learn, as we should be able to learn *P  using a more complex 
model. However, it turns out that our intuition is wrong in this case.
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Let's get back to our two-coin tossing example and consider that our dataset  
consists of 50 samples with the following frequencies: 11 heads/heads, 10 heads/
tails, 14 tails/heads, and 15 tails/tails. As all the frequencies are not equal, the  
data suggests that the two variables, X and Y, are not independent. So, let's  
consider that while learning using this data, we added an edge between X and Y.  
In this case, using the maximum likelihood estimator, we get the following 
parameters: ( ) 0.42P X H= = , ( ) 0.58P X T= = , ( )| 0.22P Y H X H= = = , 
( )| 0.2P Y T X H= = = , ( )| 0.28P Y H X T= = = , and ( )| 0.3P Y T X T= = = . Whereas, 

in a case when we do not consider any edges between X and Y, we get the following 
parameters for Y: ( ) 0.5P Y H= =  and ( ) 0.5P Y T= = . It was definitely possible for 
the probabilities to be skewed, even when we didn't consider any edges between 
the two variables. In the case of a more complex model, it is more probable that the 
parameters will be more skewed. This happens because in more complex models, 
we have lesser data to compute the parameters because of the conditioning. So, for 
example, while computing ( )|P Y T X H= = , we will only consider data samples 
for which X H= . Hence, we are left only with 29 samples; whereas in the case of 
the model when we had no edges, we considered all 50 samples for computing the 
probability values.

Hence, it's often better to consider simpler models in the case of density estimation 
problems. A simpler model might not be able to represent the underlying 
distribution, *P , very well, but it can be a much better model to generalize over the 
dataset and will give much better results on new data points.

Methods for the learning structure
In general, there are are three main ways to learn structure. We will be giving  
a short introduction to each of them in this section; we will go into details in the  
later sections.

• Constraint-based structure learning: The constraint-based structure learning 
method works on the basis of considering a Bayesian network to be a set of 
dependence conditions between the random variables. So, in this method, we 
try to find the dependence conditions from the data given to us. Using these 
conditions, we then try to construct a network. One major drawback of this 
method is that if we get a wrong result from our dependence tests, our whole 
learning fails.
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• Score-based structure learning: In this method, we consider the Bayesian 
network as a statistical model. We then define a hypothesis space of possible 
structures and a scoring function that tells us how close our structure is to 
the underlying structure. Based on these results, we then try to select the 
model that represents our underlying structure most closely. As this learning 
method considers the whole model at once, it is able to give better results 
than constraint-based learning. The problem with this model is that as our 
hypothesis space can be very large, finding the most optimal structure is 
hard. Hence, we generally resort to heuristic search techniques.

• Bayesian model averaging: In this method, we try to apply concepts similar 
to the ones we saw in earlier sections to learn many structures, and then use 
an ensemble of all these structures. As the number of network structures can 
be huge, we sometimes have to use some approximate methods to do this.

Constraint-based structure learning
In this method, we try to construct the network structure using the independence 
conditions obtained from the data. In other words, we try to construct a minimal 
I-map, given the independence conditions.

Hence, once we have the independence conditions, we can construct a network 
structure using the algorithm that we discussed earlier, but how do we answer these 
independence queries from our data?

As we can expect, this question has been extensively studied in statistics and there 
are numerous methods to answer such queries. We will discuss one of these queries, 
which is known as the hypothesis testing method. We know that if two random 
variables are independent, they should satisfy the following condition:

( ) ( ) ( ),P X Y P X P Y= ⋅

So, in our case, we would like to check whether ( ) ( ) ( )* , * *P X Y P X P Y= ⋅ . 
However, in real-life problems, we don't know ( )*P X  and ( )*P Y , and therefore, 
we use the following equation to check our hypothesis:

( ) ( ) ( )ˆ ˆ* ,P X Y P X P Y= ⋅

Now, using the data samples, we can check whether this equation holds for our 
data or not. To do this, we will need a decision rule that will tell us whether the two 
variables are independent given the data samples.
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A decision rule should basically compare the two distributions and be able to give a 
result on whether the independence holds or not. If we go for a very liberal decision 
rule, it will return the two variables to be independent even when they are not. 
Similarly, if we consider a very tight-bound decision rule, it will result in saying 
that the two variables are dependent even when they are independent. A standard 
way to design a decision function is to measure the distribution's deviance from the 
independence condition.

For two random variables, X and Y, to be independent, we can expect their count, 
[ ],M x y  in the dataset to be somewhere around ( ) ( )M P x P y⋅ ⋅ . Here, M is the total 

number of data samples that we have. Specially, in the cases when M is large, this 
condition should be satisfied. Based on this intuition, we will now derive a deviance 
measure, commonly known as 2χ  statistic:

( )
[ ] ( ) ( )( )

( ) ( )2

2

,

ˆ ˆ,
ˆ ˆx y

M x y M P x P y
d D

M P x P yχ

− ⋅ ⋅
=

⋅ ⋅∑

We can clearly see here that when our data fits our independence assumptions 
perfectly, ( )2 0d D

χ
= , and the farther it is from our assumption, the greater value  

it returns.

Another deviance measure technique based on counts is mutual information, 
( )ˆ ;

DP
I X Y , and is defined as follows:

( ) ( ) [ ] [ ]
[ ] [ ]ˆ

,

,1; , log
DI P

x y

M x y
d D I X Y M x y

M M x M y
= = ∑

Now, using any such deviance measure, we can define a threshold based on which 
our decision function will make decisions on whether two random variables are 
independent or not:

( ) ( )
( ){,

if d D tindependent
d t dependent if d D tR D <=

>=

So, simply put, if the deviance measure is more than the threshold that we have 
given, the decision function will return the variables as dependent, and if not, they 
will be independent.
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Structure score learning
As we discussed earlier, the score-based method uses a score function to score all the 
structures in our hypothesis space. Then, using the scores of all the models, we try 
to select the most optimal structure. So, in this learning method, the most important 
decision that we have to make is which scoring function to choose. Let's discuss two 
of the most commonly-used scoring functions.

The likelihood score
As we discussed earlier, the likelihood function gives us the probability of our data 
given the parameters of the model. So, we would like to select a model that has the 
maximum likelihood. In the case of structure learning, we want to learn both, the 
structure and the parameters of the structure. Therefore, our hypothesis space would 
be much larger than what we saw in the case of parameter learning.

Let's denote our graph and its parameters as , GG θ< > . Now, we want to find the 
value using the following equation:

( ) ( )
,
max | , max max | ,

G G
G GG G

P D G P D G
θ θ

θ θ⎡ ⎤< > = < >⎢ ⎥⎣ ⎦

( )ˆmax | , GG
P D G θ⎡ ⎤= < >⎣ ⎦

Here, 
Ĝθ  represents the maximum likelihood parameters for the graph, G. Therefore, 

in simple words, we want to find a graph that has the maximum likelihood when we 
use the maximum likelihood parameters for it.

To get more insight on this method, let's take the previous example of tossing two 
coins. So, there are two possibilities for the network structure. One where both the 
random variables, X and Y, are independent, and thus have no edges between them. 
The other possibility is to have a network structure, where X is the parent to Y, that 
is, X Y→ . Considering the network of the independent case to be 0G , we can get its 
likelihood score as follows:

( ) [ ] [ ]0
ˆ ˆ| log logx m y m

m
P D G θ θ= +∑
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Considering the other model, X Y→ , as 
1G , we can write its likelihood score  

as follows:

( ) [ ] [ ] [ ]1
ˆ ˆ| log logx m y m x m

m
P D G θ θ= +∑

Here, the θ̂  values are the maximum likelihood estimates. Let's consider the 
difference of these likelihood scores:

( ) ( ) [ ] [ ] [ ]1 0
ˆ ˆ| | log logy m x m y m

m
P D G P D G θ θ− = −∑

( ) ( ) [ ] [ ]1 0 |
,

ˆ ˆ| | , log logy x y
x y y

P D G P D G M x y M yθ θ− = −∑ ∑

Now, let P̂  be the empirical distribution over the data. Therefore, we can say that 
[ ] ( )ˆ, ,M x y M P x y= ⋅  and also [ ] ( )ˆM y M P y= ⋅ . Also, we have ( )|

ˆ ˆ |y x P y xθ =   
and ( )ˆ ˆ

y P yθ = . Replacing these values in the preceding equation, we get the 
following equation:

( ) ( ) ( ) ( )
( )

( )

1 0
,

ˆ

ˆ |ˆ| | , log ˆ

;
x y

P

P y x
P D G P D G M P x y

P y
M I X Y

− =

= ⋅

∑

Here, ( )ˆ ;PI X Y  is the mutual information between X and Y in the distribution, P̂
. Hence, we see here that a higher mutual information means there is a stronger 
connection between the variables, X and Y, and therefore, the model, 1G , is the more 
optimal choice.
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We can actually generalize this for general networks. We already know that we can 
write the log-likelihood function as follows:

( ) [ ]
( )

|u
1

ˆ ˆlog | , log
i i

G ii Xi

G i i x
i xu Val P a

P D n M x uθ θ
=

⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎣ ⎦

∑ ∑ ∑
ε

Let's consider a single term from the earlier equation and 
ii XU Pa= :

[ ] ( ) ( )

( ) ( )
( )

( )
( )

( ) ( )
( ) ( )

( ) ( )

( ) ( )
( )

( ) ( )

| u

ˆ

ˆ ˆ

1 ˆ ˆ ˆ, log , log |

ˆ ˆ,ˆ , log ˆ ˆ

ˆ ,ˆ ˆ ˆ, log , logˆ ˆ

1ˆ; log ˆ

;

i i
i i i i

i i

i i i i

i

i i x i i i i
u x u x

i i i
i i

u x i i

i i
i i i i i

u x x ui i

i i iP
x i

i i iP P

M x u P x u P x u
M

P x u P x
P x u

P u P x

P x u
P x u P x u P x

P x P u

I X U P x
P x

I X U H X

θ =

⎛ ⎞
= ⎜ ⎟⎜ ⎟⎝ ⎠

⎛ ⎞
= + ⎜ ⎟

⎝ ⎠

= −

= −

∑∑ ∑∑

∑∑

∑∑ ∑ ∑

∑

Here, the mutual information is, ( )ˆ ; 0i iPI X U =  when 0
iX

Pa = . Also, the second 
term in the equation, ( )ˆ iPH X , doesn't depend on the network structure, and 
therefore, we can ignore this term when comparing the likelihoods of models.

This result tells us that the likelihood score of the structure measures the strength of 
the dependencies of the variables and their parents.

In this section, until now, we have seen how the likelihood score works. In the case of 
generalizing the model for newer data points, the likelihood score gives poor results. 
We can take the example of tossing two coins. As we saw earlier, the difference of 
their likelihoods is as follows:

( ) ( ) ( )ˆ1 0| | ;PP D G P D G M I X Y− = ⋅
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As we know, the mutual information between two variables is always non-negative. 
Hence, the likelihood score of the network, X Y→ , will always be higher than the 
case when the two variables are independent. Hence, we see that the likelihood score 
always gives preference to more complex models over simpler models.

Also, as we never have completely independent variables in our data samples because 
of the added noise, likelihood scores will always select a fully-connected graph over 
all the variables, as it would be the most complex structure and, hence, would overfit 
the training data and not give good prediction results over new queries.

Let's see an example of tossing two coins using pgmpy:

In [1]: import numpy as np
In [2]: import pandas as pd
In [3]: from pgmpy.models import BayesianModel
In [4]: from pgmpy.estimators import MaximumLikelihoodEstimator

# Generating random data 
In [5]: raw_data = np.random.randint(low=0, high=2,
                                     size=(1000, 2))
In [6]: data = pd.DataFrame(raw_data, columns=['X', 'Y'])

In [7]: coin_model = BayesianModel()
In [8]: coin_model.fit(data, estimator=MaximumLikelihoodEstimator)

In [9]: coin_model.get_cpds()
Out[9]:
[<TabularCPD representing P(X: 2) at 0x7f57bd99a588>,
 <TabularCPD representing P(Y: 2 | X: 2) at 0x7f57bd99a198>]

In [10]:coin_model.get_nodes()
Out[10]: ['X', 'Y']

In [11]: coin_model.get_edges()
Out[11]:[('X', 'Y')]

The Bayesian score
In the preceding section, we saw scoring based on likelihood and also saw how it is 
prone to overfitting. Now, in this section, we will discuss another method of scoring 
from a Bayesian perspective. As we saw in the case of parameter learning, we will 
have to assign prior probabilities in this case as well. So, we will assign a prior 
probability, P(G), to the structure of the network, and a prior probability, ( )| GP θ , to 
the parameters of this network structure.
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From the Bayes' rule, we know the following equation:

( ) ( ) ( )
( )
|

G | D
P D G P G

P
P D

⋅
=

Here again, the denominator is just a normalizing factor, and therefore, we will 
ignore it and define the Bayesian score as follows:

( ) ( ) ( )log G | D log | logP P D G P G= +

The addition of a prior distribution term in the scoring function allows us to have 
control over the complexity of the model. Therefore, we assign smaller prior values 
on more complex models, and thus, we are able to penalize the complex models.

The other term in our scoring function, ( )log |P D G , takes care of the uncertainty in 
the parameters:

( ) ( ) ( )| | , |
G

G G GP D G P D G P G dθ θ θ
Θ

= ∫

Here, ( )| ,GP D Gθ  is the likelihood of the data, when a network and its parameters 
is given, and ( )|GP Gθ  is our prior distribution over different values of θ  for a given 
network, G.

The Bayesian approach does tell us that the parameter, θ̂ , is most probable when the 
dataset D is given. However, the posterior also gives us a range of choices on how 
likely each of these is. By integrating ( )| ,GP D Gθ  over Gθ , we are thus measuring 
the expected likelihood over our parameters, Gθ .

Now, let's see how to compute the marginal likelihoods in simpler cases. Let's 
consider a single random variable, X, with a prior distribution, ( )1 0,Dirichlet α α
. Also, consider that our data set contains M[1] heads and M[0] tails. The maximum 
likelihood is as follows:

( ) [ ] [ ] [ ] [ ]1 01 0ˆ|
M MM M

P D
M M

θ
⎛ ⎞ ⎛ ⎞

= ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
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Now, let's consider the marginal likelihood. We need to compute the probability over 
our data, [ ] [ ] [ ]( )1 , 2 , ,P X X X M… , given the prior. Using the chain rule, we have the 
following equation:

[ ] [ ] [ ]( ) [ ]( ) [ ] [ ]( ) [ ] [ ] [ ] [ ]( )1 , 2 , , 1 2 | 1 . . . . . | 1 , 2 , , 1P x x x M P x P x x P x M x x x M= ⋅ −… …

Using the Beta prior, we have the following equation:

[ ] [ ] [ ] [ ]( ) [ ] 11
1 | 1 , 2 , ,

mM
P x m x x x m

m
α

α
+

+ =
+

…

Here, [ ]1 mM  is the number of heads in the first m samples of the dataset. We can take 
an example of the dataset, , , , ,D H T T H H= :

[ ] [ ] [ ]( ) 0 01 1 11 1 21 , 2 , , 5
1 2 3 4

P x x x α αα α α
α α α α α

+ + += ⋅ ⋅ ⋅ ⋅
+ + + +

…

Using the values, 
1 0 1α α= =  and 

1 0 2α α α= + = , we have the following equation:

[ ] [ ]1 2 3 1 2 12 0.017
2 3 4 5 6 720
⋅ ⋅ ⋅ ⋅

= =
⋅ ⋅ ⋅ ⋅

This value is significantly lower than the likelihood.

In general, for a binomial distribution with a Beta prior, we have the  
following equation:

[ ] [ ] [ ]( ) [ ]( ) [ ]( )
( )

1 1 0 0. . . 1 1 . . . 0 1
1 , 2 , ,

. . . 1
M M

P x x x M
M

α α α α
α α

⎡ ⎤ ⎡ ⎤+ − + −⎣ ⎦ ⎣ ⎦=
+ −

…

Note here that all the terms inside the square brackets are the products of  
a sequence of numbers. If α  is an integer, we can write this term as ( )

( )1
1 !
!

Mα
α
+ − ,  

but in this case, we don't know whether α  is an integer. So, we use  
a generalized gamma function to represent such terms:

( ) ( ) ( )
( )

1 . . . 1
M

M
α

α α α
α

Γ +
+ + − =

Γ
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Using this result in our earlier equation, we get the following equation:

[ ] [ ] [ ]( ) ( )
( )

[ ]( )
( )

[ ]( )
( )

1 0

1 0

1 0
1 , 2 , ,

M M
P x x x M

M
α αα

α α α
Γ + Γ +Γ

= ⋅ ⋅
Γ + Γ Γ

…

We can have a generalized formula for multinomial distributions as well:

[ ] [ ] [ ]( ) ( )
( )

( )
( )1

1 , 2 , ,
ik i

i i

M x
P x x x M

M
αα

α α=

⎡ ⎤Γ +Γ ⎣ ⎦= ⋅
Γ + Γ∏…

The Bayesian score for Bayesian 
networks
In the preceding section, we discussed computing the Bayesian score in the case 
of single random variables. In this section, we will generalize our discussion to 
compute the Bayesian score for Bayesian networks. Again, we will take the case of 
having two random variables, X and Y, and two possible network structures over 
them. We will denote the structure with no edges between X and Y with 0G  and the 
X Y→  network with 1G .

For 
0G , we have the following equation:

( ) ( ) ( )0 , 0 0| , | | , , | ,
X Y X Y X Y X YP D G P G P D G dθ θ θ θ θ θΘ Θ= ∫

Assuming that the parameters are independent, we have the following equation:

( ) ( ) [ ]( )0 0 0| | | ,
X Y X X

m
P D G P G P x m G dθ θ θΘ

⎛ ⎞= ⋅⎜ ⎟
⎝ ⎠

∏∫

( ) [ ]( )0 0| | ,
Y Y Y Y

m
P G P y m G dθ θ θΘ

⎛ ⎞
⎜ ⎟
⎝ ⎠

∏∫

In the preceding equation, we can see that we have a marginal likelihood for each of 
the variables, X and Y. Now, if both of these variables are multinomial and have a 
Dirichlet prior, we can write each of these terms in the form of the equation that we 
discussed in the preceding section.
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Now, let's consider the case of 1G . Again, assuming parameter independence, we 
can decompose the integral as follows:

( ) ( ) [ ]( )1 1 1| | | ,
X X X X

m
P D G P G P x m G dθ θ θΘ

⎛ ⎞= ⋅⎜ ⎟
⎝ ⎠

∏∫

( ) [ ]( )
[ ]

0 0 00| 0
1 1| | |

:

| | ,
Y x Y x Y x Y x

m x m x

P G P y m G dθ θ θΘ
=

⎛ ⎞
⋅⎜ ⎟⎜ ⎟⎝ ⎠

∏∫

( ) [ ]( )
[ ]

0 1 11| 1
1 1| | |

:

| | ,
Y x Y x Y x Y x

m x m x

P G P y m G dθ θ θΘ
=

⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠

∏∫

Now, let's compare the marginal likelihood of both the cases. If we choose the 
priors, ( )0|XP GΘ  and ( )1|XP GΘ , to be the same in both cases, we can see that 
the first terms in both cases are equal. Thus, given the assumption about the prior, 
the difference in the marginal likelihood is due to the difference in the marginal 
likelihood in all the observations over X, and all the observations over Y when 
we split the observations based on the value of X. Therefore, if Y has a different 
distribution in the split using observations of X, the latter term will have a better 
marginal likelihood. If the distribution is same in both splits, the simpler model will 
have a higher marginal likelihood. Thus, we can solve the problem that we faced in 
the case of maximum likelihood scoring.

Let's take an example of a learning structure using pgmpy:

In [1]: import numpy as np
In [2]: import pandas as pd
In [3]: from pgmpy.models import BayesianModel
In [4]: from pgmpy.estimators import BayesianEstimator

# Generating random data for two coin tossing examples
In [4]: raw_data = np.random.randint(low=0, high=2,
                                     size=(1000, 2))
In [5]: data = pd.DataFrame(raw_data, columns=['X', 'Y'])
In [6]: print(data)
Out[6]:
     X  Y
0    0  1
1    1  0
2    1  1
3    1  1
4    1  1
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5    0  0
..  ..  ..
995  0  0
996  1  1
997  1  0
998  0  0
999  0  0

[1000 rows x 2 columns]
In [7]: coin_model = BayesianModel()
In [8]: coin_model.fit(data, estimator=BayesianEstimator)
In [9]: coin_model.get_cpds()
Out[9]:
[<TabularCPD representing P(X: 2) at 0x7f57bda018d0>,
 <TabularCPD representing P(Y: 2) at 0x7f57bda0124a>]

In [10]:coin_model.nodes()
Out[10]:['X', 'Y']

In [11]: coin_model.edges()
Out[11]: []

Let's take another example for the late-for-school model:

In [12]: raw_data = np.random.randint(low=0, high=2, 

                                      size=(1000, 6)
In [12]: data = pd.DataFrame(raw_data, columns=['A', 'R', 'J', 

                                                'G', 'L', 'Q'])

In [13]: student_model = BayesianModel()
In [14]: student_model.fit(data, esitmator=BayesianEstimator)

In [15]: student_model.get_cpds()
Out[15]:
[<TabularCPD representing P(A: 2) at 0x7a57e462d128>,
 <TabularCPD representing P(R: 2) at 0x7c57ad993048>,
 <TabularCPD representing P(J: 2) at 0x7f17cd991160>,
 <TabularCPD representing P(G: 2) at 0x7e67b129a278>,
 <TabularCPD representing P(L: 2) at 0x7e37e4695390>,
 <TabularCPD representing P(Q: 2) at 0x7f67a289d649>]

In [16]:student_model.get_nodes()
Out[16]:[ 'A', 'R', 'J', 'G', 'L', 'Q']

In [17]:student_model.get_edges()
Out[17]:[]

As we had generated the data randomly, all the variables are independent.



Model Learning – Parameter Estimation in Bayesian Networks

[ 196 ]

Summary
In previous chapters, we considered that we know the structure of the network, 
which is not true in most of real-life cases. In such cases, we need to learn the 
structures from the data. In this chapter, we discussed the problem of learning 
the parameters and structures using just data samples. Firstly, we discussed two 
different techniques of parameter estimation, maximum likelihood estimation, and 
Bayesian estimation. We saw that in cases when the data samples given to us don't 
represent the underlying distribution, the Maximum Likelihood estimate fails to 
generalize over new data points. Then, we discussed the problem of learning the 
structure from the data using the same two techniques, that is, maximum likelihood 
and Bayesian learning. We showed that in the case of structure learning as well, 
maximum likelihood overfits the training data if we don't have enough samples.

In the next chapter, we will discuss the parameters and structures of Markov 
networks using data samples.
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Model Learning – Parameter 

Estimation in  
Markov Networks

In the preceding chapter, we learned about parameters and structures from the 
data in the case of Bayesian networks. In this chapter, we will focus on learning 
parameters and structures in the case of Markov networks. As it turns out, the 
learning task in the case of Markov networks is more difficult. This is because of the 
partition function that comes in the probability distribution. Because this partition 
function depends on all factors, it doesn't let us decompose our optimization 
functions into separate terms, as in the case of Bayesian networks. Therefore, we 
have to use some iterative method over the optimization function to find the optimal 
point in the parameter space.

In this chapter, we will discuss the following topics:

• Maximum likelihood parameter estimation
• Learning with approximate inference
• Structure learning

Maximum likelihood parameter 
estimation
As in the case of Bayesian networks, we can also estimate the parameters in the case 
of Markov networks using maximum likelihood. Let's see in detail how maximum 
likelihood works in the case of Markov networks.
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Likelihood function
Let's take a very simple example of the network, X — Y — Z. We have two 
potentials, ( )1 ,X Yφ  and ( )2 ,Y Zφ . We can now define the joint distribution over  
this network as follows:

( ) ( ) ( )1 2
1, , . , . ,P X Y Z X Y Y Z
Z
φ φ=

Here, Z is the partition function and is defined as follows:

( ) ( )1 2
, ,z

, . ,
x y

Z X Y Y Zφ φ= ∑

Therefore, the log-likelihood equation for a single instance <x, y, z> would be  
as follows:

( ) ( ) ( )1 2ln , , ln , ln , lnP x y z x y y z Zφ φ= + −

Suppose we have a dataset D containing M samples, we can write the likelihood in 
the following way:

( ) ( ) [ ] [ ]( ) [ ] [ ]( )1 2
1: , ,

m
P D x m y m y m z m

Z
θ φ φ

θ
= ⋅ ⋅∏

Thus, the log-likelihood equation translates to the following formula:

( ) [ ] [ ]( ) [ ] [ ]( )( )
[ ] ( ) [ ] ( ) ( )

1 2

1 2
, ,

ln : ln , ln , ln

, ln , , ln , ln
m

x y y z

P D x m y m y m z m Z

M x y x y M y z y z M Z

θ φ φ

φ φ θ

= + −

= + −

∑
∑ ∑

As we have seen in the case of Bayesian networks, once we have sufficient 
statistics that summarize the data (the joint count of the variables), we can learn 
the parameter, θ . However, with Markov models, the problem is the third term 
appearing in the earlier equation, that is, ( )lnM Z θ :

( ) ( ) ( )1 1, ,Z x y y zθ φ φ= ⋅
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Thus, we get the following formula:

( ) ( ) ( )( )1 2ln ln , ln ,M Z M x y y zθ φ φ= +

So, the term ln Z(ύ) couples both 1φ  and 2φ . This poses a serious issue when we 
want to estimate the parameters by maximizing the likelihood. If we change the 
potential 1φ , it will change the value of 2φ  due to the coupling introduced by Z(ύ). 
So, unlike the Bayesian network, we cannot estimate the conditional probabilities 
independent of each other.

However, this problem can be solved for this specific network by treating the 
Markov model (X — Y — Z) as a Bayesian model X→Y→Z. Thus, learning the 
parameters of this Bayesian model, which are P(X), P(Y│X), and P(Z│Y). Once 
we have estimated these parameters, it can be converted again to the context of a 
Markov model:

( ) ( ) ( )1 , |X Y P X P Y Xφ = ⋅

( )2 |P Z Yφ =

However, the caveat for this method is that not all Markov models can be converted 
into Bayesian models. For example, the diamond-shaped model represented in Fig 
6.1 cannot be converted into a Bayesian model:

Fig 6.1: Diamond-shaped network that cannot be converted into a Bayesian model
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Before we go into further discussion to learn the parameters for a Markov model, 
let's discuss a particular representation of it called as the log-linear model.

Log-linear model
A feature, ( )f D , is a function from a subset of variables ranging from D  to . It 
is similar to the factor with the non-negativity constraint. A special type of feature 
is the indicator feature. An indicator feature is such that it is 1 for some values of 

( )y Valε D  and 0 otherwise.

Suppose that φ  is a factor over a subset of variables represented by D . The factor, 
( )φ D , can also be expressed as follows:

( ) ( )( )expφ = −D ε D

Here, ( )Dε  is called as the energy function. Thus, the energy function is simply 
represented as follows:

( ) ( )InD Dφ= −ε

Let's consider two random variables, X and Y, both of them have the cardinality, 
m. Let's assume their distribution is such that they are more favorable to situations 
when both of them have the same value. So, their energy function may be something 
like this:

( ) 10
,

0
X Y

X Y
otherwise

=⎧ ⎫
= ⎨ ⎬
⎩ ⎭

ε

If we have a full factor representing the distribution, we need to have the 2m  values. 
This could be represented as a constant multiple (10) of the indicator feature for the 
event X = Y. Thus, the energy function, ( )i iD∈ , can be compactly represented as 

( )i i iw f⋅ D  (in this particular case, iw  is 10 and ( )i if D  is an identity feature).



Chapter 6

[ 201 ]

From our previous discussion, we know that the joint probability distribution  
of random variables, 1 2, ,..., nX X X , encoded by a Markov model will be the 
following formula:

( ) ( ) ( )

( ) ( )

( ) ( )

1 2
1

1

1

1, ,...,

1 exp

1 exp

k

n i i
i

k

i i
i

k

i i i
i

P X X X
Z

Z

w f
Z

φ
θ

θ

θ

=

=

=

=

⎡ ⎤= −⎢ ⎥⎣ ⎦
⎡ ⎤= − ⋅⎢ ⎥⎣ ⎦

∏

∑

∑

D

ε D

D

This type of representation of a Markov model is called a log-linear model. A 
log-linear model is associated with a set of features, ( ) ( ) ( ){ }1 1 2 2, ,..., k kf f fD D D , and 
weights, { }1 2, ,..., kw w w , where iD  is a complete sub-graph of the model and is 
expressed as follows:

( ) ( ) ( )1 2
1

1, ,..., exp
k

n i i i
i

P X X X w f
Z θ =

⎡ ⎤= − ⋅⎢ ⎥⎣ ⎦
∑ D

Let's go back to our previous discussion about estimating the parameters of 
a Markov model by maximizing the likelihood. We can write the probability 
distribution for ( )1 2, ,..., :nP X X X θ , as follows:

( ) ( ) ( )1 2
1

1, ,..., : exp
k

n i i i
i

P X X X f
Z

θ
=

⎡ ⎤Θ = − ⋅⎢ ⎥Θ ⎣ ⎦
∑ D

So, the likelihood function for a dataset, D, containing M examples will be as follows:

( ) ( ) ( )( )
10

1: exp
m k

i i i
ij

P D f j
Z

θ
==

⎡ ⎤Θ = − ⋅⎢ ⎥Θ ⎣ ⎦
∑∏ D
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Thus, the log-likelihood equation will be as follows:

( ) ( )( ) ( )

( )( ) ( )

( )( ) ( )

1 1

1 1 1

1 1

ln : ln
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= = =

= =

⎛ ⎞Θ = ⋅ − Θ⎜ ⎟
⎝ ⎠
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⎝ ⎠

⎛ ⎞
= ⋅ − Θ⎜ ⎟

⎝ ⎠
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D

D

D

Dividing both sides of the preceding equation by M, we get the following formula:

( ) ( )( ) ( )

( ) ( )

1 1

1

1 1ln : ln

ln

k m

i i i
i j

k

i D i i
i

P D f j Z
M M

f Z

θ

θ

= =

=

⎛ ⎞
Θ = ⋅ − Θ⎜ ⎟

⎝ ⎠

= ⋅ − Θ⎡ ⎤⎣ ⎦

∑ ∑

∑

D

DE

Here, ( )D i if⎡ ⎤⎣ ⎦E D  is the empirical expectation of if , that is, its average over  
the dataset.

Gradient ascent
In the preceding section, we saw that to estimate the parameters, we have to 
maximize the earlier equation. As the equation is not in a closed form, we have to 
use some iterative techniques to compute the maximum values. One of the simplest 
iterative techniques is the gradient ascent. In this section, we will mainly focus on 
gradient ascents and how to use them.

In this method, we will start with a random point on the curve and move upward 
in the direction of the gradient. So, if ( )tx  is the point that we got in the previous 
iteration, then ( )1tx +  would be as follows:

( ) ( ) ( )( )1t t tx x f xη+ ← + ∇

This is repeated until we can't go any further, that is, 
( ) ( )1t tx x δ+ − < , where δ is the 

convergence threshold. This is analogous to climbing up the hill. For example, let's 
consider a simple equation, such as f(x) = sin x. We want to find the maxima of the 
given function in the interval from 0 to π.
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Fig 6.2: Plot showing the steps taken in each step of the gradient ascent

In Fig 6.2, the green curve shows the steps taken in each iteration of the gradient 
ascent. We can see that when we reach the maxima, the gradient approaches 0, thus 
x, with each iteration, the value of x will keep decreasing, that is, ( ) ( )1t tx x δ+ − < .

The performance of the gradient ascent depends on the choice of η. If η is too large (as 
shown in Fig 6.3), we will overshoot the maxima in each iteration. If η is too small (as 
shown in Fig 6.4), we will require a lot of iterations to converge. In practice, the value 
of η should be adaptive. It should start with the large of η and reduce in each iteration:

Fig 6.3: The n in this case is 2
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In each iteration, we can see that the algorithm overshoots the maxima within 100 
iterations, and that we are not able to converge with the maxima.

Fig 6.4: The n in this case is 0.01

The green curve shows the steps taken in each iteration. As the steps are very small, 
it takes a lot of iterations to converge. In this case, it was 758.

In real life, we generally don't use the gradient ascent algorithms. Instead, we use 
one variant of it called the conjugate gradient ascent. The conjugate gradient method 
solves the issue of overshooting by adding a friction term, that is, each step depends 
on the last two values of the gradient, and sharp turns are avoided.

In Python, this can be implemented as follows:

In [1]: import numpy as np
In [2]: from scipy import optimize

# The methods implemented in scipy are meant to find the minima, 
# thus to find the maxima we have to negate the functions
In [3]: f_to_optimize = lambda x: -np.sin(x)
In [4]: optimize.fmin_cg(f_to_optimize, x0=[0])
Optimization terminated successfully.
         Current function value: -1.000000
         Iterations: 2
         Function evaluations: 15
         Gradient evaluations: 5
Out[5]: array([ 1.57079632])
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There are multiple methods that use second-order methods for faster convergence, 
such as L-BGFS. The detailed descriptions of these algorithms are out of the scope of 
this book.

Let's go back to our discussion on the estimation of the parameters for a Markov 
model. In the previous section, we saw that the log-likelihood equation was as follows:

( ) ( ) ( )
1

1 : ln
k

i D i i
i

l D f Z
M

θ
=

Θ = ⋅ − Θ⎡ ⎤⎣ ⎦∑ DE

Here, ( ):l DΘ is the log-likelihood function and is defined as ( )In :P DΘ . For any 
gradient-based method, we need to have the gradient of the log-likelihood function 
with respect to iθ . The gradient is computed as follows:

( ) ( ) [ ]1 : D i i i
i

l D f f
Mθ Θ

∂ Θ = −⎡ ⎤⎣ ⎦∂
DE E

As we know, at the maxima, the value of the derivate would be 0, thus at the maxima, 
the value of ( ) [ ]D i i if fΘ=⎡ ⎤⎣ ⎦E ED  (the expected value of each feature relative  
to the distribution [ ]ifΘE ) matches its empirical expectation, ( )D i if⎡ ⎤⎣ ⎦E D , in D.  
We discussed earlier that to compute the value of Θ , we have to retort to an iterative 
method. For the iterative method, we need to compute the gradient. From the 
preceding equation, we know that the gradient is the difference between the empirical 
expectation of the feature in the data (its empirical count) and its expected count 
relative to the current parameterization. For example, let's consider a Markov model, 
as given in Fig 6.5, between the two binary-valued random variables, A and B:

Fig 6.5: Markov model representing the dependencies among two  
random variables, A and B, each of them being binary valued
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Considering that the features used for the model are only indicator features, that is, 
( )

0 0,
,a bf a b , ( )

1 0,
,a bf a b , ( )

0 1,
,a bf a b , and ( )

1 1,
,a bf a b , where ( )

0 0,
,a bf a b  is simply 

( ) ( )0 0I a a I b b= ⋅ = . ( )0I a a=  being the indicator function would be 1 if 0a a= ; 
otherwise, it would be 0. Then, 

0 0,D a bf⎡ ⎤
⎣ ⎦E  will be the empirical frequency of 

 0 0,a b  in the dataset D, and 0 0,a bfΘ
⎡ ⎤
⎣ ⎦E  will be the probability of getting  

0 0,a b  for a particular value of Θ, that is, [ ]0 0,a bΘΕ . So, the gradient would be  
the difference between the two numbers, as stated earlier.

However, this method poses a serious issue. To compute the gradient at each step, 
we need to compute the value of [ ]0 0,a bΘΕ . This requires the inference to be run 
over the whole network. Thus, in each iteration of the gradient ascent step, we need 
to run the inference over the complete network, which is computationally very 
expensive and also intractable sometimes.

Now, let's see some code examples to learn parameters using pgmpy:

In [1]: import numpy as np
In [2]: import pandas as pd
In [3]: from pgmpy.models import MarkovModel
In [4]: from pgmpy.estimators import MaximumLikelihoodEstimator

# Generating some random data
In [5]: raw_data = np.random.randint(low=0, high=2, size=(100, 2))
In [6]: raw_data
Out[6]:
array([[1, 1],
           [1, 1],
           [0, 1],
           ..., 
           [0, 0],
           [0, 0],
           [0, 0]])
In [7]: data = pd.DataFrame(raw_data, columns=['A', 'B'])
In [8]: data
Out[8]:
     A  B
0    1  1
1    1  1
2    0  1
3    1  0
..  .. ..
996  1  1
997  0  0
998  0  0
999  0  0
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[1000 rows x 2 columns]

# Markov Model as stated in Fig 6.5
In [9]: markov_model = MarkovModel([('A', 'B')])
In [10]: markov_model.fit(data,
                          estimator=MaximumLikelihoodEstimator)
In [11]: factors = coin_model.get_factors()
In [12]: print(factors[0])
Out[12]:
╒═══════════════════════════════╕
│ A     │  B     │     phi(A,B) │
╞═══════════════════════════════╡
│ A_0   │  B_0   │     0.1000   │
├───────────────────────────────┤
│ A_0   │  B_1   │     0.2000   │
├───────────────────────────────┤
│ A_1   │  B_0   │     0.4600   │
├───────────────────────────────┤
│ A_1   │  B_1   │     0.2400   │
╘═══════════════════════════════╛

Learning with approximate inference
In the preceding section, we saw that to estimate parameters using the maximum 
likelihood method, we need to run the inference algorithm in each step or iteration of 
the learning method to compute [ ]ifΘE . This is irrespective of the learning method 
that we use. Running the exact inference over the whole network is computationally 
expensive, and sometimes, intractable. For example, in the case of a grid network, the 
exact inference algorithms are computationally intractable.

There are multiple ways to overcome this issue. One way is to treat the inference 
algorithm as a black box independent of the learning algorithm. This approach has 
its own advantages and disadvantages. It allows us to use approximate inference 
algorithms instead of exact ones, which are computationally tractable. However, at 
the same time, the inaccuracy in computing the gradient might lead to oscillations in 
the learning algorithm, thus affecting its convergence.

Another way of solving this issue is to use the alternative approximate objective 
functions whose optimization does not require the inference to be run over the 
whole network. Unlike the previous method, which approximately optimized the 
likelihood function, this method optimizes an approximated likelihood function 
exactly. Although it may seem that both of these methods try to do the same thing, 
one way or the other, the second approach is more useful, as it allows us to use 
any applicable optimization algorithm and also allows us to bind the error in the 
optimum values.
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Belief propagation and pseudo-moment matching
One of the most popular inference algorithms is the belief propagation. One way 
to use the belief propagation is to simply run it in each step of a gradient ascent 
to compute the expected value of a feature with respect to the distribution. In the 
previous chapters, we studied the family preservation property of the cluster graph. 
Due to the family preservation property, we can say that each feature, if , will be a 
subset of a cluster, iC , in the cluster graph. Thus, to compute the value of [ ]ifΘE
, we can simply compute the belief propagation marginals of iC , and then compute 
its expectation. However, this approach has some serious issues. In the case of grid 
graphs, the belief propagation won't converge. Thus, the gradient computed using 
the marginals will be oscillatory. So, any gradient-based optimization algorithm 
won't converge.

One solution to this issue is to use the convergent version of the belief propagation. 
For example, the belief propagation using approximate messages or using an 
alternate objective function.

As we discussed in the preceding section, at convergence, ( ) [ ]D i i if fΘ=⎡ ⎤⎣ ⎦E ED ,  
which is the expected value of each feature relative to the distribution,  
( [ ]ifΘE ) matches its empirical expectation in D ( ( )D i if⎡ ⎤⎣ ⎦E D ). This can be 
reformulated in the context of the belief propagation as follows:

( ) ( ) [ ]
iD i i ii Cf fβ=⎡ ⎤⎣ ⎦E ED

The distribution of the cluster graph is parameterized by the set of the  
cluster potentials, ( ( )i iCβ ). Let's assume that for each cluster, iC , in the  
cluster graph and for each assignment of j

iC  in the cluster iC , we have an  
indicator feature, ( )jiI C  (which is 1 when j

i iC c= ; otherwise, it will be 0). Thus, the 
preceding equation, ( ) ( ) [ ]

iD i i ii Cf fβ=⎡ ⎤⎣ ⎦E ED , translates to the following formula:

( ) ( )j j
i i ic P cβ =

At the convergence of the gradient ascent algorithm, the belief of cluster 
iC  must be 

the same as the empirical frequencies of the variables present in 
iC  in the data. This 

formulation gives us a major advantage—if we already know the outcome of the 
convergence, there is no need to run the algorithm.
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As the full table parameterization of a Markov model is redundant, we can have 
multiple solutions that give rise to the same beliefs. One such solution could be 
obtained by dividing the cluster potential of a particular cluster, iC  ( iβ ) by the 
sepset potential, ,i jµ . This can be described as follows:

,

i
i

i j

βφ
µ

←

This method can be summarized as follows:

1.  For each cluster, iC , compute the cluster potential, iβ , as the empirical 
frequencies of the variables present in the cluster from the data, that is, 
( ) ( )j j
i i ic P cβ = .

2. Run a single pass of a message passing algorithm to calibrate the graph. 
Compute the sepset potential, ,i jµ , corresponding to a sepset, ,i jS , between 
iC  and jC .

3. Compute the final factors as 
,

i
i

i j

βφ
µ

← .

Now, let's see some code examples for how to learn parameters using pgmpy:

In [1]: import numpy as np
In [2]: import pandas as pd
In [3]: from pgmpy.models import MarkovModel
In [4]: from pgmpy.estimators import PseudoMomentMatchingEstimator

# Generating some random data
In [5]: raw_data = np.random.randint(low=0, high=2, size=(100, 4))
In [6]: raw_data
Out[6]:
array([[1, 1, 0, 0],
       [1, 1, 1, 0],
       [0, 1, 0, 1],
       ..., 
       [0, 0, 0, 0],
       [0, 0, 0, 0],
       [0, 0, 1, 1]])
In [7]: data = pd.DataFrame(raw_data, columns=['A', 'B', 'C', 'D'])
In [8]: data
Out[8]:
     A  B  C  D
0    1  1  0  0
1    1  1  1  0
2    0  1  0  1
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3    1  0  0  0
..  .. .. .. ..
996  1  1  0  1
997  0  0  0  0
998  0  0  0  0
999  0  0  1  1

[1000 rows x 4 columns]

# Diamond shaped Markov Model as stated in Fig 6.1
In [9]: markov_model = MarkovModel([('A', 'B'), ('B', 'C'),  
                                    ('C', 'D'), ('D', 'A')])
In [10]: markov_model.fit(data, 
                         estimator=PseudoMomentMatchingEstimator)
In [11]: factors = coin_model.get_factors()
In [12]: factors
Out[12]:
[<Factor representing phi(A:2, B:2) at 0x7f244d0f5e87>,
 <Factor representing phi(B:2, C:2) at 0x7f244d0f5e97>,
 <Factor representing phi(C:2, D:2) at 0x7f244d0f5f10>,
 <Factor representing phi(D:2, A:2) at 0x7f244d0f5f24>]

Structure learning
In the preceding chapter, we discussed structure learning in the case of Bayesian 
models. In this section, we will focus on structure learning in the case of Markov 
models. Similar to structure learning in the case of Bayesian models, here, we are 
also going to focus on the two methods of structure learning. The first one being a 
constraint-based approach, which tries to search for a graph structure, satisfying the 
independence conditions observed from the data. The other approach is score-based 
in which we define an objective function for a different model, and then search for a 
high-scoring model.

Constraint-based structure learning
In the preceding chapter, we discussed the constraint-based structure learning in 
the case of a Bayesian model. In Markov models, this approach seems to be more 
advantageous as compared to the scoring-based approach. As the independence 
conditions for Markov models are much simpler than those in Bayesian models 
(which involve d-separation), the algorithms inferring the structure are much 
simpler. The other major advantage is that the scoring-based structure learning uses 
the likelihood function. From our previous discussion, we know that computing the 
likelihood is computationally expensive in the case of Markov models, and in some 
cases, it may be intractable as well.
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On the other hand, the constraint-based approaches have some disadvantages as 
well. As we try to find dependence conditions among variables from the data, this 
method is not robust to the noise present in the data. So, if we get a wrong result 
from our dependence tests, our whole learning fails. Secondly, these methods only 
learn the structure of the model, not the distribution. To obtain the distribution, 
we must use the methods that we have for parameter estimation (which we had 
discussed in the preceding section).

Before going into a detailed discussion about constraint-based learning, let's first 
recapitulate the independencies of a Markov model:

• Local Markov independencies: This independence is of a variable, X, from 
the rest of the variables in the model given its Markov blanket, that is, 

{ } ( ) ( )( )|X X MB X MB X⊥ − − H HX
• Pair-wise independencies: This independence is of each nonadjacent pair of 

variables, X, Y, given all the other variables, { }( )| ,X Y X Y⊥ −X
• Global independencies: This independence includes all the independencies 

present due to the separation among the variables in the graph

Let's go back to our discussion on structure learning. Assume that we have a 
distribution, *P , that can be represented by a Markov model, *H , so that *H  
is a perfect map for *P . Our objective is to find *H  by performing the earlier-
stated independence tests on *P . However, none of the independencies can be 
checked tractably, as they all involve the entire set of variables, X . Apart from being 
computationally intractable, this also poses some serious statistical issues. One of 
them is that the independence assertions are evaluated on the empirical data and not 
on the true distribution. Secondly, to estimate the distribution sufficiently well, we 
need many data points exponentially.

To overcome this issue, we need to come up with an alternative set of independencies 
that involves only small subsets of variables. For example, if in a network, *H , X, 
and Y are not neighbors, they are separated by the Markov blankets, ( )*MB XH  and 

( )*MB YH . Thus, we can find a set, Z, such that ( ) ( )( )* *min ,Z MB X MB X≤ H H . On 
the other hand, if X and Y are neighbors in *H , we cannot find any such set, Z. Thus, 
we can state the following equation:

( )*if and only if , *& *| |X Y Z z d P X Y Z− ∃ ≤ = ⊥/εH
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Here, *d  is the maximum cardinality of any variable. Thus, we can  

see that to determine whether X Y−  is present in *H , we need to run 
*

0

2d

k

n
k=

−⎛ ⎞
⎜ ⎟⎝ ⎠

∑  
independence tests with tests involving only * 2d +  variables. So, for 
small values of *d , it is computationally tractable.

Although these algorithms work fairly in some cases, they have some very 
fundamental limitations:

• The number of samples required to obtain correct results for all the 
independent tests are too high.

• This algorithm assumes that there is a Markov model, *H  present, which 
is a perfect map of the distribution, *P . At the most, the cardinality of a 
variable can only be *d . The violation of any of these assumptions will lead 
to learning incorrect network structures.

Score-based structure learning
In the preceding chapter, we learned that in score-based structure learning, we define 
a hypothesis space consisting of possible networks and an objective function, which 
is required to score different networks, and then we construct a search algorithm that 
attempts to find the network structure with the highest score in the hypothesis space. 
In the case of Markov models, we will be following similar principles.

Let's first discuss the formulation of the hypothesis space. There are many ways 
of formulating the hypothesis space, depending on the granularity at which they 
consider network parameterization:

• The coarsest-grained hypothesis space being the space of different structures 
of the Markov model.

• At the next level, we could consider the network parameterization to be the 
size of the factors in the graph. In this case, the hypothesis space is a space 
consisting different factor graphs.

• At the finest level of granularity, we can consider the hypothesis space to 
be at the level of individual features in a log-linear model and measure the 
sparcity at the level of the features included in the model.
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As the level of granularity of the hypothesis space increases, it allows us to select a 
parameterization that matches the properties of the distribution of data without 
over-fitting. For example, the hypothesis space at the granularity of a factor graph 
allows us to distinguish between a single large factor over k variables and a set of 2

k⎛ ⎞
⎜ ⎟⎝ ⎠  

pair-wise factors over the same variables (which require far less parameters). 
However, at the same time, finer-grained spaces can obscure the connection to 
network structures. For example, if we are dealing with the hypothesis space at the 
level of individual features, the addition of a single feature, ( )f d , into the model 
will increase the complexity of the model by introducing edges between all the 
variables present in d. This will create an issue while performing an inference in  
the model.

In this section, we will focus on score-based structure learning, with the hypothesis 
space being at the level of individual features. Considering our hypothesis space 
to be Ω , our task is to select a log-linear model structure, M , which is defined 
by a subset of features, [ ]Φ ⊆ΩM . Assume that [ ]Φ M  is the set of parameters, 
θ , that are compatible with the model structure. This can also be written as 

[ ]0 only ifi ifθ ≠ Φε M . The structure and compatible parameterization define a 
log-linear model distribution as follows:

( ) ( )
[ ]

{ }

1| , exp

1 exp

i i
i

T

P f
Z

f
Z

θ θ ξ

θ

Φ

⎧ ⎫⎪ ⎪= ⋅⎨ ⎬
⎪ ⎪⎩ ⎭

=

∑
ε M

X M

Sometimes, in addition to the objective function, we also want to impose some 
additional structural constraints. For example, we may want to bind the tree width 
of the graph structure. These constraints help in rejecting very dense networks, thus 
reducing the chances of over-fitting.

The likelihood score
Similar to the likelihood score discussed for Bayesian models, the likelihood score for 
Markov models is defined as follows:

[ ]
( )

( )
max In | ,

ˆ, :

Lscore P D

l D

θ
θ

θ

Θ
=

=

ε M

M

M

M
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Here, θ̂M  are the maximum likelihood parameters compatible with M . Here, as 
well, the likelihood score measures the fitness of the model to the data. Further, in 
this case, the likelihood score tries to select a more complex model as it could capture 
the noise in the data very well. So, in reality, the likelihood scores are used only with 
very strict constraints on the structure of the model. For example, putting an upper 
bound on the tree width of the graph structure.

Let's see an example of tossing two binary variable models using pgmpy:

In [1]: import numpy as np
In [2]: import pandas as pd
In [3]: from pgmpy.models import MarkovModel
In [4]: from pgmpy.estimators import MaximumLikelihoodEstimator

# Generating random data 
In [4]: raw_data = np.random.randint(low=0, high=2, 
                                     size=(1000, 2))
In [5]: data = pd.DataFrame(raw_data, columns=['X', 'Y'])
In [6]: model = MarkovModel()
In [7]: model.fit(data, estimator=MaximumLikelihoodEstimator)

In [8]: model.get_factors()
Out[8]:
[<Factor representing phi(X:2, Y:2) at 0x7f244d0f5e87>]
In [9]: model.nodes()
Out[9]:
['X', 'Y']
In [10]:coin_model.edges()
Out[10]:
[('X', 'Y')]

Bayesian score
In the preceding chapter, we discussed the Bayesian score whose primary term is 
a marginal likelihood that integrates the likelihood over all the possible network 
parameterizations, that is, ( ) ( )| , |P D P dθ θ θ∫ M M . This avoided over fitting 
by preventing overly optimistic or complex models from fitting into the training 
data. However, unlike Bayesian models, in the case of Markov models, it is not as 
easy to evaluate the likelihood. Thus, evaluating the marginal likelihood becomes a 
challenge in this case.
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So, in this case, we use asymptotic approximation of the marginal likelihood:

( ) ( )dimˆ, : ln
2BICscore l D Mθ= −M

M
M

Here, ( )dim M  is the dimension of the model and M is the number of instances of 
the dataset, D. It measures the degree of freedom of our parameter space. When the 
model has non-redundant features, ( )dim M is exactly the number of features. Also, 
when we have redundant features, it is less than the number of features.

Let's see an example of tossing two binary variable models using pgmpy:

In [1]: import numpy as np
In [2]: import pandas as pd
In [3]: from pgmpy.models import MarkovModel
In [4]: from pgmpy.estimators import BayesianEstimator

# Generating random data 
In [4]: raw_data = np.random.randint(low=0, high=2, 
                                     size=(1000, 2))
In [5]: data = pd.DataFrame(raw_data, columns=['X', 'Y'])
In [6]: model = MarkovModel()
In [7]: model.fit(data, estimator=BayesianEstimator)

In [8]: model.get_factors()
Out[8]:
[<Factor representing phi(X:2, Y:2) at 0x7f244d0f5e87>]
In [9]: model.get_nodes()
Out[9]:
['X', 'Y']
In [10]:coin_model.get_edges()
Out[10]:
[('X', 'Y')]
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Summary
In the previous chapters, we discussed learning the parameters, as well as the 
structures, of a Bayesian model using just the data samples. In this chapter, we 
discussed the same situations, but in the context of a Markov model. Firstly, we 
discussed a very famous technique of parameter estimation, maximum likelihood 
estimation. We saw that in Markov models, even the maximum likelihood estimate 
in the case of a simple model could be computationally expensive, and in some 
cases, it could also be intractable. This motivated us to find alternatives, such as 
using approximate inference algorithms to compute the gradient or using a different 
likelihood. We showed that learning with belief propagation can be reformulated as 
optimizing inference and learning simultaneously. Then, we discussed the problem 
of learning the structure from the data using the same two techniques, maximum 
likelihood and Bayesian learning.

In the next chapter, we will discuss some of the most commonly used special  
cases of the Bayesian and Markov networks, such as Naive Bayes and dynamic 
Bayesian networks.
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Specialized Models

In the previous chapters, we discussed the generic cases of models. Now we have  
a good understanding of these models. In this chapter, we will discuss some of  
the special cases of Bayesian and Markov networks that are extensively used in  
real-life problems.

In this chapter, we will be discussing:

• The Naive Bayes model
• Dynamic Bayesian networks
• The Hidden Markov model

The Naive Bayes model
The Naive Bayes model is one of the most efficient and effective learning algorithms, 
particularly in the field of text classification. Although over-simplistic, this model has 
worked out quite well. In this section, we are going to discuss the following topics:

• What is a Naive Bayes model?
• Why does it even work?
• Types of Naive Bayes models
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Before discussing the Naive Bayes model, let's first discuss about the Bayesian 
classifier. A Bayesian classifier is a probabilistic classifier that uses the Bayes theorem 
to predict a class. Let c be a class and { }1 2, ,..., nX x x x=  be a set of features. Then, the 
probability of the features belonging to class c, that is ( )|P c X , can be computed 
using the Bayes theorem as follows:

( ) ( ) ( )
( )

|
|

P c P X c
P c X

P X
⋅

=

So, for a given set of features, the output class can be predicted as follows:

( )
( ) ( )

( )
( ) ( )

ˆ argmax |

|
argmax

argmax |

c C

c C

c C

c P c X

P c P X c
P X

P c P X c

=

⋅
=

= ⋅

ε

ε

ε

Here, P(c) is the prior probability of the class c and ( )|P X c  is the likelihood  
of X given c. If X were an univariate feature, then computing ( )|P X c  would  
be ( )1 |P x c , which is easier to compute. However, in the case of multivariate 
features, ( )|P X c  is as follows:

( ) ( ) ( )1 1 1
2

| | | ,..., ,
n

i i
i

P X c P x c P x x x c−
=

= ∏

The Naive Bayes model simplifies the computation of ( )|P X c  by taking a strong 
independence assumption over the features.

Fig 7.1: Graphical model representing the Naive Bayes model
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Fig 7.1 shows the graphical model corresponding to the naive assumption of a 
strong independence among the features. It assumes that any features ix  and jx  are 
conditionally independent of each other given their parent c (or [ ]| , 1,i jx x c i j n⊥ ∀ ε ). 
Thus, ( )|P X c  can be stated as follows:

( ) ( )
1

| |
n

i
i

P X c P x c
=

=∏

For example, let's say we want to classify whether a given ball is a tennis ball or a 
football, and the variables given to us are the diameter of the ball, the color of the 
ball, and the type of surface. Here, the color of the ball, the size, and surface type are 
clearly independent variables and the type of ball depends on these three variables 
giving a network structure, as shown in Fig 7.2:

Fig 7.2: Network structure for the ball classification example
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Why does it even work?
Although over-simplistic in assumption regarding dependence between the features, 
the Naive Bayes algorithm has performed very well in some cases. Surprisingly, it 
also performs very well in cases where there exists a strong dependence between the 
features or attributes. In this section, we are going to unravel the mystery.

Let's start with a simple binary classification problem where we have to predict the 
output class c based on the feature X. As it is a binary classification, there are only 
two output classes. For the sake of simplicity, let's assume one class to be a positive 
class, represented as c+ , and the other to be a negative class, represented as c− .  
One simple explanation is that Naive Bayes owes its good performance to the  
zero-one loss function that defines the error as the number of incorrect classifications. 
Unlike other loss functions, such as squared error, the zero-one loss function does 
not penalize the incorrectness in estimating the probability as long as the maximum 
probability is assigned to the correct class. For example, for a given set of features 
X, the actual posterior probability ( )|P c X+  might be 0.8, and ( )|P c X−  might be 
0.2, but due to the naive assumption regarding the dependencies between features, 
Naive Bayes may predict ( )|P c X+  as 0.6 and ( )|P c X−  as 0.4. Although the 
probability estimations are incorrect, the class predicted is same in both of these 
cases. Thus, Naive Bayes performed well in the case of strong dependencies between 
features. However, the fundamental question has not yet been answered: why 
couldn't the strong dependencies between features flip the classification?

Before discussing the details, let's introduce the formal definition of the equivalence 
of two classifiers under the zero-one loss function. Two classifiers 1f  and 2f  are 
said to be equal under the zero-one loss function, if for every X in the example space, 
( )1 0f X ≥  and ( )2 0f X ≥ . This is denoted as 1 2f f= .

Let's assume the true graphical model TG  (as shown in the Fig 7.3) represents the 
dependencies between the features. The probability ( )1 2, ,..., ,

T nP x x x cG  can be stated 
as follows:

( ) ( ) ( )( )1 2
1

, ,..., , | ,
T T

n

n i i
i

P x x x c P c P x Pa x c
=

= ∏G G
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Here, ( )
T iPa xG  represents the parent of ix  in TG , except for the class node c.

Fig 7.3: Graphical model representing strong dependencies between the features

To measure how strong the dependency between two features is, we have to 
quantify it. Naturally, the ratio of conditional probability of a node given its  
parents ( ( )( )| ,

Ti iP x Pa x cG ) over the conditional probability of the node without  
its parents ( ( ),iP x c ) reflects how strong the parent affects the node in each class. 
This parameter is called a local dependence derivate and is represented as follows:

( )( ) ( )( )
( )
| ,

|
|,
T

T T

i i

i

P x Pa x c
dd x Pa x

P x c

+
+

+
= G

G G

( )( ) ( )( )
( )
| ,

|
|,
T

T T

i i

i

P x Pa x c
dd x Pa x

P x c

−
−

−
= G

G G

When x has no parents, ( )( )|
T T

dd x Pa x+
G G  is defined as 1. When ( )( )| 1

T T
dd x Pa x+ ≥G G

, it means x's local dependency supports class c+ , else it supports the class c−
. Similarly, ( )( )| 1

T T
dd x Pa x− ≥G G

. This means x's local dependency supports class is 
c− , else it supports class c+ . In the case where the local dependence derivate for 
each class supports the other, it means they partially cancel each other out and the 
final classification is the class with the maximum local dependence derivate. So, to 
check which class supports the local dependencies, we can use the ratio of the local 
dependence derivate of the two classes, represented as 

T
ddrG :

( )( )
( )( )

|

|
T T

T

T T

dd x Pa x
ddr

dd x Pa x

+

−
= G G

G
G G
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If 1
T

ddr >G , then x's local dependency supports class 1
T

ddr <G . If c− , then x's local 
dependency supports class 1

T
ddr =G . If , the local dependence distributes evenly in 

both c+  and c− . Thus, the dependency does not affect the classification, however 
strong it may be.

As stated earlier, for classification using the Bayesian classifier, we use 
( ) ( )ˆ argmax |

c C
c P c P X c

∈
= ⋅ . Thus, in cases of binary classification, we can define  

a variable ( )1 2, ,..., ,nf x x x c  as the ratio of ( ) ( )|P c P X c+ +⋅  over ( ) ( )|P c P X c− −⋅ :

( ) ( ) ( )
( ) ( )1 2

|
, , , ,
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P c P X c
f x x x c

P c P X c

+ +

− −

⋅
=

⋅
K

If ( )1 2, , , , 1nf x x x c ≥K , then the example is classified as belonging to the class c+ , else 
c− . Summarizing all the earlier formulations, ( )1 2, , , ,

T nf x x x cKG  can be stated  
as follows:
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Here, ( )1 2, , , ,
N B nf x x x cKG  represents ( )1 2, , , ,nf x x x cK  in the case of the Naive  

Bayes model. Thus, from the earlier equation, we can state that 
N B T

f f=G G  under 

the zero-one loss function when 1
T
f ≥G  and ( )

1
T T

n

i
i
ddr x f

=

≤∏ G G , or 1
T
f <G  and 

( )
1

T T

n

i
i
ddr x f

=

>∏ G G . Therefore, we can conclude that the distribution of dependencies 

between the features over classes (that is ( )
T iddr xG

) affect the classification, not 
merely the dependencies.
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So, in cases where for each feature, ix , ( ) 1
T iddr x =G , that is, the local distribution 

of each feature is distributed evenly across both positive and negative classes, the 
Naive Bayes model will perform in the same way as the model representing the 
dependencies among the features. Further, in cases where ( )

1
1

T

n

i
i
ddr x

=

=∏ G , that is, the 
influence of some local dependencies in favor of class c+  is canceled by the influence 
of some other dependencies in favor of class c− , Naive Bayes will be an optimal 
classifier as well.

Because of its independence assumption, the parameters for each feature can be learned 
separately, which greatly simplifies the learning process and is very useful in a domain 
where we have very many features. In the case of document classification, the features 
or the attributes of a document are nothing but the words comprising it. In most of the 
cases, the vocabulary is huge, thus leading to a very large number of features. So, one of 
the major algorithms used in document classification is Naive Bayes.

Types of Naive Bayes models
There are two variants of the Naive Bayes model that are generally used for 
document classification.

One model specifies that a document is represented by a vector of binary attributes 
indicating which words occur and which words do not occur in the document. The 
attributes are independent of the number of times a word occurs in a document. 
So, the computation of the probability of a document involves multiplication of the 
probabilities of all the attribute values, including the probability of non-occurrence 
for words that do not occur in the document. Here, we consider the document to be 
the event, and the absence or presence of words to be attributes of the event. This 
describes a distribution based on a multivariate Bernoulli event model.

The second model specifies that a document is represented by the set of word 
occurrences in the document. In this model, however, the number of occurrences of 
each word in the document is captured. So, computing the probability of a document 
involves multiplication of the probability of the words that occur. Here we consider 
the individual word occurrences to be the events and the document to be a collection 
of word events. We call this a multinomial event model.
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Multivariate Bernoulli Naive Bayes model
As stated earlier, in the case of a multivariate Bernoulli Naive Bayes model, 
a document is considered as a binary vector of the space of words for a given 
vocabulary V. The document d can be represented as { }1 2, , , Vb b bK , where ib  
corresponds to the presence of the word iw  in the document; 1ib =  if 0ib =  
is present, itb  otherwise. More often, tw  is defined as an indicator variable 
representing the presence of the word id  in the document .

Thus, ( )|i jP d c  is defined as follows:

( ) ( )( ) ( ) ( )( )( )
1

| | 1 1 |
V

i j it t j it t j
t

P d c b P w c b P w c
=

= ⋅ + + ⋅ −∏

We can see that a document is considered as a collection of multiple independent 
Bernoulli experiments, one for each word in the vocabulary, with the probabilities 
for each of these word events defined by each component ( )|t jP w c .

The scikit-learn Python module provides us with the implementation of the 
Naive Bayes model. Let's look at an example of text classification. Before going into 
the details of classification, let's discuss one of the major steps in text classification 
known as feature extraction.

The most common strategy to extract features from a text document is called a  
bag-of-words representation. In this representation, documents are described by 
word occurrences while completely ignoring the relative position information of the 
words in the document. The scikit-learn Python module provides utilities for 
the most common ways of extracting numerical features from text content, which 
includes the following:

• Tokenizing strings and giving an integer ID for each possible token
• Counting the occurrences of tokens in each document
• Normalizing and weighting with diminishing importance of tokens that 

occur in the majority of samples/documents

Let's discuss the various feature extraction methods implemented in scikit-learn 
with examples. The first feature extractor we will discuss is CountVectorizer.  
It implements both tokenization and counting occurrences:

In [1]: from sklearn.feature_extraction.text import CountVectorizer
# The input parameter min_df is a threshold which is used to 
# ignore the terms that document frequency less than the 
# threshold. By default it is set as 1.



Chapter 7

[ 225 ]

In [2]: vectorizer = CountVectorizer(min_df=1)

In [3]: corpus = ['This is the first document.',
                  'This is the second second document.',
                  'And the third one.',
                  'Is this the first document?']

# fit_transform method basically Learn the vocabulary dictionary 
# and return term-document matrix.
In [4]: X = vectorizer.fit_transform(corpus)

# Each term found by the analyzer during the fit is assigned a 
# unique integer index corresponding to a column in the resulting 
# matrix.
In [5]: print(vectorizer.get_feature_names())
   ['and', 'document', 'first', 'is', 'one', 'second', 'the', 
    'third', 'this'])

# The numerical features can be extracted by the method toarray
# It returns a matrix in the form of (n_corpus, n_features)
# The columns correspond to vectorizer.get_feature_names(). The 
# value of a[i, j] is basically the count of word correspond to 
# column j in document i.
In [6]: print(X.toarray())
array([[0, 1, 1, 1, 0, 0, 1, 0, 1],
          [0, 1, 0, 1, 0, 2, 1, 0, 1],
          [1, 0, 0, 0, 1, 0, 1, 1, 0],
          [0, 1, 1, 1, 0, 0, 1, 0, 1]]…)
 
# Instead of using the count we can also get the binary value 
# matrix for the given corpus by setting the binary parameter 
# equals True.
In [7]: vectorizer_binary = CountVectorizer(min_df=1, binary=True)

In [8]: X_binary = vectorizer_binary.fit_transform(corpus)
# The value of a[i, j] == 1 means that the word corresponding to 
# column j is present in document i
In [9]: print(X_binary.toarray())
   array([[0, 1, 1, 1, 0, 0, 1, 0, 1],
             [0, 1, 0, 1, 0, 1, 1, 0, 1],
             [1, 0, 0, 0, 1, 0, 1, 1, 0],
             [0, 1, 1, 1, 0, 0, 1, 0, 1]])
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Another interesting feature extractor is called tf-idf, which is short for term "frequency-
inverse document frequency". In a large text corpus, some words are present in 
almost all the documents. These include "the", "a", and "is", hence carrying very little 
meaningful information about the actual contents of the document. If we were to feed 
the direct count data directly to a classifier, these very frequent terms would shadow 
the frequencies of rarer yet more interesting terms. Tf-idf basically diminishes the 
importance of these words that occur in the majority of documents. It is basically the 
product of two terms, namely term frequency and inverse document frequency. Term 
frequency corresponds to the frequency of a term in a document, that is, the number of 
times the term t appears in the document d. Inverse document frequency is a measure 
of how much information the word provides, that is, whether the term is common or 
rare across all documents. Let's take an example for Tf-idf using scikit-learn:

In [1]: from sklearn.feature_extraction.text import TfidfVectorizer

In [2]: corpus = ['This is the first document.',
                          'This is the second second document.',
                          'And the third one.',
                          'Is this the first document?']

# The input parameter min_df is a threshold which is used to 
# ignore the terms that document frequency less than the 
# threshold. By default it is set as 1.
In [3]: vectorizer = TfidfVectorizer(min_df=1)

# fit_transform method basically Learn the vocabulary dictionary 
# and return term-document matrix.
In [4]: X = vectorizer.fit_transform(corpus)

# Each term found by the analyzer during the fit is assigned a 
# unique integer index corresponding to a column in the resulting 
# matrix.
In [5]: print(vectorizer.get_feature_names())
['and', 'document', 'first', 'is', 'one', 'second', 'the',   
 'third', 'this'])

# The numerical features can be extracted by the method toarray
# It returns a matrix in the form of (n_corpus, n_features)
# The columns correspond to vectorizer.get_feature_names(). The 
# value of a[i, j] is basically the count of word correspond to 
# column j in document i
In [6]: print(X.toarray())
[[ 0.          0.43877674  0.54197657  0.43877674  0.          0.
  0.35872874  0.          0.43877674]
[ 0.          0.27230147  0.          0.27230147  0.          
0.85322574
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  0.22262429  0.          0.27230147]
[ 0.55280532  0.          0.          0.          0.55280532  0.
  0.28847675  0.55280532  0.        ]
[ 0.          0.43877674  0.54197657  0.43877674  0.          0.
  0.35872874  0.          0.43877674]]

There are other implementations of feature extractors in scikit-learn, such as 
HashingVectorizer, which uses the hashing trick to create a mapping from the 
string token name to the feature index. It turns a collection of text documents into a 
scipy.sparse matrix holding token occurrence counts. As it uses the scipy.sparse 
matrix, it is very memory efficient and can be used in the case of large text documents.

Let's come back to our discussion on the implementation of text classification using 
the multivariate Bernoulli Naive Bayes model:

In [1]: from sklearn.datasets import fetch_20newsgroups
In [2]: from sklearn.feature_extraction.text import HashingVectorizer
In [3]: from sklearn.feature_extraction.text import CountVectorizer
In [4]: from sklearn.naive_bayes import BernoulliNB
In [5]: from sklearn import metrics

# The dataset used in this example is the 20 newsgroups dataset.
# The 20 Newsgroups data set is a collection of
# approximately 20,000 newsgroup documents, partitioned (nearly)
# evenly across 20 different newsgroups. It will be
# automatically downloaded, then cached.

# For our simple example we are only going to use 4 news group
In [6]: categories = ['alt.atheism',
                      'talk.religion.misc',
                      'comp.graphics',
                      'sci.space']

# Loading training data
In [7]: data_train = fetch_20newsgroups(subset='train', 
                                        categories=categories, 
                                        shuffle=True, 
                                        random_state=42)

# Loading test data
In [8]: data_test = fetch_20newsgroups(subset='test',                      
                                       categories=categories,
                                       shuffle=True, 
                                       random_state=42)
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In [9]: y_train, y_test = data_train.target, data_test.target

# It can be changed to "count" if we want to use count vectorizer
In [10]: feature_extractor_type = "hashed"

In [11]: if feature_extractor_type == "hashed":
         # To convert the text documents into numerical features, 
         # we need to use a feature extractor. In this example we 
         # are using HashingVectorizer as it would be memory
         # efficient in case of large datasets
             vectorizer = HashingVectorizer(stop_words='english')

             # In case of HashingVectorizer we don't need to fit 
             # the data, just transform would work.
             X_train = vectorizer.transform(data_train.data)
             X_test = vectorizer.transform(data_test.data)

        elif feature_extractor_type == "count":
        # The other vectorizer we can use is CountVectorizer with 
        # binary=True. But for CountVectorizer we need to fit 
        # transform over both training and test data as it 
        # requires the complete vocabulary to create the matrix
            vectorizer = CountVectorizer(stop_words='english', 
                                         binary=True)

    # First fit the data
In [12]: vectorizer.fit(data_train.data + data_test.data)
    
# Then transform it
In [13]: X_train = vectorizer.transform(data_train.data)
In [14]: X_test = vectorizer.transform(data_test.data)

# alpha is additive (Laplace/Lidstone) smoothing parameter (0 for 
# no smoothing).
In [15]: clf = BernoulliNB(alpha=.01)

# Training the classifier
In [16]: clf.fit(X_train, y_train)

# Predicting results
In [17]: y_predicted = clf.predict(X_test)

In [18]: score = metrics.accuracy_score(y_test, y_predicted)
In [19]: print("accuracy: %0.3f" % score)
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Multinomial Naive Bayes model
In the previous section, we discussed the multivariate Bernoulli Naive Bayes model. 
In this section, we are going to discuss another variant called the multinomial model. 
Unlike the previous model, it captures the word frequency information of a document.

In the multinomial model, a document is considered to be an ordered sequence 
of word events drawn from the same vocabulary V. Again, we make a similar 
Naive Bayes assumption that the probability of each word event in a document 
is independent of the word's context and position in the document. Thus, each 
document id  is drawn from a multinomial distribution of words with as many 
independent trials as the length of 

id . The distribution is parameterized by vectors 
( )1 2, , ,c c c c Vθ θ θ θ= …  for all c Cε , where |V| is the size of the vocabulary and ciθ  

represents the probability of the word iw  belonging to the class c, that is ( )|iP w c .

The parameter ciθ  is estimated by a maximum likelihood estimate as follows:

ci
ci

c

N
N V α

θ α+=
+

Here, 
ciN  is defined as the number of times the word iw  appeared in the sample  

of class c in the training set 
[ ]

ci di
d T c

N x= ∑
ε

, where dix  represents the word count  
of iw  in the document d, T[c] represents all the samples of the training set T 
belonging to the class c, and cN  is defined as the total count of all features for  
class c, that is 

1

V

c ci
i

N N
=

=∑ .

The smoothing parameter α  accounts for features not present in the learning 
samples. It prevents the assignment of zero probabilities to words not present in 
a particular class. Setting 1α =  is called Laplace smoothing, while 1α < is called 
Lidstone smoothing.

It's implementation in Python is as follows:

In [1]: from sklearn.datasets import fetch_20newsgroups
In [2]: from sklearn.feature_extraction.text import TfidfVectorizer
In [3]: from sklearn.feature_extraction.text import CountVectorizer
In [4]: from sklearn.naive_bayes import MultinomialNB
In [5]: from sklearn import metrics

# Just like the previous example, here also we are going to deal
# 20 newsgroup data.
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In [6]: categories = ['alt.atheism',
                      'talk.religion.misc',
                      'comp.graphics',
                      'sci.space']

# Loading training data
In [7]: data_train = fetch_20newsgroups(subset='train',
                                        categories=categories, 
                                        shuffle=True, 
                                        random_state=42)

# Loading test data
In [8]: data_test = fetch_20newsgroups(subset='test',
                                       categories=categories,
                                       shuffle=True, 
                                       random_state=42)

In [9]: y_train, y_test = data_train.target, data_test.target
In [10]: feature_extractor_type = "tfidf"

In [11]: if feature_extractor_type == "count":
         # The other vectorizer we can use is CountVectorizer
         # But for CountVectorizer we need to fit transform over 
         # both training and test data as it requires the complete 
         # vocabulary to create the matrix
             vectorizer = CountVectorizer(stop_words='english')
             vectorizer.fit(data_train.data + data_test.data)
             X_train = vectorizer.transform(data_train.data)
             X_test = vectorizer.transform(data_test.data)

         elif feature_extractor_type == "tfidf":
             vectorizer = TfidfVectorizer(stop_words="english")
             X_train = vectorizer.fit_transform(data_train.data)
             X_test = vectorizer.transform(data_test.data)

# alpha is additive (Laplace/Lidstone) smoothing parameter (0 for 
# no smoothing).
In [12]: clf = MultinomialNB(alpha=.01)

# Training the classifier
In [13]: clf.fit(X_train, y_train)

# Predicting results
In [14]: y_predicted = clf.predict(X_test)

In [15]: score = metrics.accuracy_score(y_test, y_predicted)
In [16]: print("accuracy: %0.3f" % score)
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Choosing the right model
In the previous sections, we discussed two different variants of Naive Bayes models, 
the multivariate Bernoulli model and the multinomial model. There has been a lot 
of research on which model to choose. McCallum and Nigam (1998) did extensive 
comparisons of both the models (refer to the research paper titled A Comparison of 
Event Models for Naive Bayes Text Classification). They found that the multivariate 
Bernoulli model performs well with small vocabulary sizes, but the multinomial 
Bernoulli model usually performs better at larger vocabulary sizes, providing on 
average, a 27 percent reduction in error over the multivariate Bernoulli model at any 
vocabulary size. However, it is advisable to evaluate both the models.

Dynamic Bayesian networks
In the examples we have seen so far, we have mainly focused on variable-based models. 
In these types of models, we mainly focus on representing the variables of the model. 
As in the case of our restaurant example, we can use the same network structure for 
multiple restaurants as they share the same variables. The only difference in all these 
networks would be the different states in the case of different restaurants. These 
types of models are known as variable-based models.

Let's take a more complex example. Let's say we want to model the state of a robot 
traveling over some trajectory. In this case, the state of the variables will change with 
time, and also, the states of some variables at some instance t might depend on the 
state of the robot at instance 1t − . Clearly, we can't model such a situation with a 
variable-based model. So, generally, for such problems, we use dynamic Bayesian 

networks (DBNs).

Assumptions
Before discussing the simplifying assumptions that DBNs make, let's first see the 
notations that we are going to use in the case of DBNs. As DBNs are defined over a 
range of time, with each time instance having the same variables, representing the 
instantiation of a random variable iX  at a time instance t, we will be using ( )t

iX . The 
variable 

iX  is now known as a template variable as it can't take any values itself. 
This template variable is instantiated at various time instances, and at each instance 
t, the variable ( )t

iX  can take values from ( )iVal X . Also, for a set of random variables 
χ⊆X , we use ( )1 2:t tX , where 1 2t t<  to denote the set of variables ( ) [ ]{ }1 2: ,t t t tX ε . 

Similarly, we use the notation  to denote the assignments to this set of variables.
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As we can see, the number of variables will be huge between any considerable 
time difference and hence, our joint distribution over such trajectories will be very 
complex. Therefore, we make some assumptions to simplify our distribution.

Discrete timeline assumption
The first simplifying assumption that we make is to have a discrete timeline rather 
than having a continuous one. So, the measurement of the states of the random 
variables are taken at some predetermined time interval ∆ . With this assumption 
now, the random variable ( )tX  represents the values of the variables at a time 
instance t ⋅∆ .

Using this assumption, we can now write the distribution over the variable over a 
time period 0 to T as follows:

( )( ) ( ) ( )( )
1

0: 1 0:

0
|

T
T t t

t
P Pχ χ χ

−
+

=

=∏

Therefore, the distribution over trajectories is the product of conditional distribution 
over the variables at each previous time instance, given all the past variables.

The Markov assumption
The second assumption that we make is as follows:

( ) ( )( ) ( )0: 11 |tt tχ χ χ−+ ⊥

Putting this in simple words, the variables at time t + 1 can directly depend only on 
the variables at time t and are thus, independent of all the variables ( )tχ ′  for 1t t′ < −
. Any system that satisfies this condition is known as Markovian. This assumption 
reduces the earlier joint distribution equation to the following:

( )( ) ( ) ( )( )
1

0: 1

0
|

T
T t t

t
P Pχ χ χ

−
+

=

=∏

In other words, this assumption also constraints our network, such that the variables 
in ( )1tχ +  can't have any edges from any other variable in ( )0: 1tχ − .
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However, the problem with this assumption is that it may not hold in all cases. 
Let's take an example to show this. Suppose we want to model the location of a 
car. As we can see, we can easily predict the location of the car in the future, given 
the observations about the past. Also, let's assume that we only have two random 
variables {L,O} and L representing the location of the car and O representing the 
observed location. Here, we might think that our model satisfies the Markov 
assumption as the location at t + 1 will only depend on the location at time t and is 
independent of the location at t′  for t t′ < . However, this intuition might turn out 
to be wrong as we don't know the velocity or the direction of travel of the car. Had 
we known the previous locations of the car, we could have easily estimated both 
the direction and velocity. So, in such cases, to make our model closer to satisfying 
our Markov assumption, we can add the variables direction and velocity in 
our model. Now, at each instance of time, if we know the velocity and direction 
of motion of the car, we can predict the next instance using just the values of the 
previous instance. Now, to account for the changes in the velocity and direction, 
we can also add variables such as weather conditions and road conditions. With the 
addition of these extra variables, our model is now close to being Markovian.

Model representation
The Markov assumption and the independence assumption that we saw in the 
previous section allow us to represent the joint distribution very compactly, even 
over infinite trajectories. All we need to define is the distribution for the initial state 
and a transition model ( )|P χ χ′ . We can represent the preceding car example using 
a network as shown in Fig 7.4, Fig 7.5, and Fig 7.6.

Fig 7.4: The 2-TBN network for the car example
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The following flowchart depicts the network structure at time t = 0:

Fig 7.5: The network structure

The following figure is the flowchart that shows the unrolled DBN over a  
two-time slice:

Fig 7.6: Unrolled DBN over a two-time slice
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Also, we define the interface variables Iχ  as variables whose values at time t have a 
direct effect on the variables at time t + 1. Therefore, only the variables in Iχ  can be 
parents of the variables in χ′ . Also, the preceding car example is an example of a two-
time slice Bayesian network (2-TBN). We define a 2-TBN for a process over χ  as a 
conditional Bayesian network over χ′ , given Iχ , where Iχ χ⊆  is a set of interface 
variables. In our example, all the variables are interface variables, except for O.

Overall, this 2-TBN represents the following conditional distribution:

( ) ( ) ( )
1

| | |
i

n

i X
i

P P I P X Paχ χ χ χ ′
=

′ ′ ′= =∏

For each template variable iX , the CPD ( )|
ii XP X Pa ′′ is known as the template factor. 

This template factor is instantiated multiple times in the network for each ( )t
iX .

Currently, none of the Python libraries for PGM has a concrete implementation to 
work with DBN. However, pgmpy developers are currently working on it so it should 
soon be available in pgmpy.

The Hidden Markov model
In the previous section, we discussed DBNs. In this section, we will discuss one 
particular variant of it, called the Hidden Markov model (HMM). Although named 
the Hidden Markov model, it is not a Markov network. Its etymology comes from 
the fact that the HMM satisfies the Markov property.

A Markov property basically indicates the memory-less property of a stochastic 
process, and any stochastic process satisfying this property is called as a 
Markov process. Let ( ){ }, 0X t t ≥  be a time-continuous process. Then, for 
every 0n ≥ , time points 0 1 10 n nt t t t−≤ < < < <L  with states 0 1, , ni i iL . Then, 

( ) ( ) ( )( ) ( ) ( )( )1 0 0 1| 1 , , | 1n n n n n n n nP X t i X t i X t i P X t i X t i− −= − = = = = − =L . This means 
that the current state depends only on the previous state; any additional knowledge 
about the history doesn't add any extra information.
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For example, if we sample the mood of a person once a minute, then it is fair to assume 
that the current mood of the person is only affected by his/her mood in the previous 
minute (unless that person is suffering from bipolar disorder). In the case of predicting 
the trajectory of a missile, we can also assume that the position of the missile at 1tX +  
can be determined by tX  alone. Although at first glance, this may not seem to be 
correct, if the trajectory is sampled very fast, it may be a very good approximation.

Fig 7.7: Graphical model representation of a Markov process

Fig 7.7 shows the graphical model representation of a Markov process. In most 
applications of such models, the probability distribution ( )1|t tP X X −  is assumed to 
be equal for any value of t. ( )1|t tP X X −  can be represented in the form of a transition 
matrix (A) or a state-transition diagram. For example, if we want to model the mood 
of a person (which can be very sad, sad, happy, or very happy), we can represent this 
in the form of a state-transition diagram:

Fig 7.8: State-transition diagram representing the transition of the mood of a person across time
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The preceding figure shows the transition of the mood of a person from one state 
to another. For example, from the diagram, we can infer that the probability of 
transitioning from a very happy state to a happy state is 0.15, the probability of 
remaining in the same state is 0.8, and so on. As all the edge weightings represent 
the probability, all the weightings corresponding to the edges outgoing from a single 
node should sum up to 1.

Another way of representing ( )1|t tP X X −  is with a transition matrix. A transition 
matrix (A) is a matrix in the shape of N x N, where N represents the number of states. 
Each element ija  of a transition matrix A represents the probability of transitioning 
from state is  to state js . For example, the transition matrix corresponding to the 
preceding state-transition diagram would be as follows:

Very Sad Sad Happy Very Happy

Very Sad 0.2 0.6 0.15 0.05
Sad 0.2 0.3 0.3 0.2
Happy 0.05 0.05 0.7 0.2
Very Happy 0.005 0.045 0.15 0.8

For the first node 
0X , there is no parent node. So unlike all other nodes, its distribution 

can't be encoded by the conditional probability distribution of the form ( )1|t tP X X − . 
So, for this node, the distribution is a marginal probability distribution called the initial 
state probability distribution π . It is an array of shape of N x 1, with the constraint 

1
1

N

i
i
π

=

=∑ . For example, in the earlier mood example, the matrix can be as follows:

Very Sad Sad Happy Very Happy

0.1 0.4 0.4 0.1

However, in real-life situations, we can't directly observe the state of the variable, 
that is, the variables  are hidden from us. For example, we can't observe whether a 
person is very sad, sad, happy, or very happy just by looking at this table. Instead, 
we can observe some other variable 1 2, , , tX X XL  that is affected by tZ . For 
example, the current activity of a person (which is an observable parameter) can tell 
us about his/her mood. Thus, the graphical model representing the system, as stated 
in Fig 7.7, is modified as follows:

Fig 7.9: Graphical model representing a Hidden Markov model
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With the addition of extra nodes and edges to the graphical model, we need 
an additional conditional probability distribution ( )|t tP Z X (called emission 
probability), which is represented as Θ . It is assumed to be equal for any value of t. 
Thus, an HMM model can be represented by the following three parameters:

• The initial state probability distribution ( ( )0P X ), represented as 
( ), ,λ π= Α Θ

• The transition matrix corresponds to the distribution ( )1|t tP X X −  and is 
represented as A

• Emission probabilities corresponding to the distribution ( )|t tP Z X  and are 
represented as Θ

Thus, an HMM model can be stated as ( ), ,λ π= Α Θ .

Generating an observation sequence
Given model ( ), ,λ π= Α Θ , we can generate a sequence of observations 

{ }1 2, , , TZ Z ZZ = L  as follows:

1. Choose an initial state 0 iX s=  ( { }1, ,is N!ε ) according to the initial state 
distribution π .

2. Set t = 1.

3. Choose an observation tO  corresponding to tX  according to the emission 
probability Θ .

4. Transit to the next state 1tX +  according to the state-transition probability 
represented by the transition matrix A.

5. Set t = t + 1 and return to step 3 if t < T, else terminate.

For HMM and its application in Python, we will use a library called hmmlearn. It is 
an offshoot of a popular machine learning library in Python called scikit-learn.

Let's continue with the previous mood example. Suppose we are able to observe the 
current activity of a person, and for the sake of simplicity, let's assume it is restricted 
to a few possibilities such as watching television, sleeping, eating, crying, and 
playing. As the observed value is also a discrete quantity, the emission probability 
Θ  can be represented in the form of a tabular conditional probability distribution.

Very Sad Sad Happy Very Happy

Watching Television 0.045 0.2 0.3 0.1
Sleeping 0.15 0.2 0.1 0.1
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Very Sad Sad Happy Very Happy

Eating 0.2 0.2 0.1 0.2
Crying 0.6 0.3 0.05 0.05
Playing 0.005 0.1 0.45 0.55

The preceding distribution represents the probability given the mood of the person. 
For example, the first row and first column basically represent the probability of 
someone watching television when he/she is very sad.

To represent an HMM with multinomial (or discrete) emission, The hmmlearn library 
provides a class called MultinomialHMM. It's implementation in Python is as follows:

In [1]: from hmmlearn.hmm import MultinomialHMM
In [2]: import numpy as np

# Here n_components correspond to number of states in the hidden 
# variables and n_symbols correspond to number of states in the 
# obversed variables
In [3]: model_multinomial = MultinomialHMM(n_components=4)

# Transition probability as specified above
In [4]: transition_matrix = np.array([[0.2, 0.6, 0.15, 0.05],
                                         [0.2, 0.3, 0.3, 0.2],
                                         [0.05, 0.05, 0.7, 0.2],
                                         [0.005, 0.045, 0.15, 0.8]])
# Setting the transition probability
In [5]: model_multinomial.transmat_ = transition_matrix

# Initial state probability
In [6]: initial_state_prob = np.array([0.1, 0.4, 0.4, 0.1])

# Setting initial state probability
In [7]: model_multinomial.startprob_ = initial_state_prob

# Here the emission prob is required to be in the shape of 
# (n_components, n_symbols). So instead of directly feeding the 
# CPD we would using the transpose of it.
In [8]: emission_prob = np.array([[0.045, 0.15, 0.2, 0.6, 0.005],
                                  [0.2, 0.2, 0.2, 0.3, 0.1],
                                  [0.3, 0.1, 0.1, 0.05, 0.45],
                                     [0.1, 0.1, 0.2, 0.05, 0.55]])

# Setting the emission probability
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In [9]: model_multinomial.emissionprob_ = emission_prob

# model.sample returns both observations as well as hidden states
# the first return argument being the observation and the second 
# being the hidden states
In [10]: Z, X = model_multinomial.sample(100)

The other type of HMM model that implements in hmmlearn is GaussianHMM. It 
represents HMM with Gaussian emissions. Thus, for characterizing the emission 
probability Θ , instead of using a complete tabular CPD, we can just provide the 
mean and covariance. For example, let's try to sample observations from an HMM 
with N = 3 and with a mean µ  and covariance ∑ :

In [1]: from hmmlearn.hmm import GaussianHMM
In [2]: import matplotlib.pyplot as plt
In [3]: import numpy as np

# Here n_components correspond to number of states in the hidden 
# variables.
In [4]: model_gaussian = GaussianHMM(n_components=3, 
                                     covariance_type='full')

# Transition probability as specified above
In [5]: transition_matrix = np.array([[0.2, 0.6, 0.2],
                                      [0.4, 0.3, 0.3],
                                      [0.05, 0.05, 0.9]])

# Setting the transition probability
In [6]: model_gaussian.transmat_ = transition_matrix

# Initial state probability
In [7]: initial_state_prob = np.array([0.1, 0.4, 0.5])

# Setting initial state probability
In [8]: model_gaussian.startprob_ = initial_state_prob

# As we want to have a 2-D gaussian distribution the mean has to 
# be in the shape of (n_components, 2)
In [9]: mean = np.array([[0.0, 0.0],
                         [0.0, 10.0],
                         [10.0, 0.0]])

# Setting the mean
In [10]: model_gaussian.means_ = mean
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# As emission probability is a 2-D gaussian distribution, thus 
# covariance matrix for each state would be a 2-D matrix, thus 
# overall the covariance matrix for all the states would be in the # 
form of (n_components, 2, 2)
In [11]: covariance = 0.5 * np.tile(np.identity(2), (3, 1, 1))
In [12]: model_gaussian.covars_ = covariance

# model.sample returns both observations as well as hidden states
# the first return argument being the observation and the second 
# being the hidden states
In [13]: Z, X = model_gaussian.sample(100)

# Plotting the observations
In [14]: plt.plot(Z[:, 0], Z[:, 1], "-o", label="observations", 
                  ms=6, mfc="orange", alpha=0.7)

# Indicate the state numbers
In [15]: for i, m in enumerate(mean):
             plt.text(m[0], m[1], 'Component %i' % (i + 1),
                      size=17, horizontalalignment='center',
                      bbox=dict(alpha=.7, facecolor='w'))

In [16]: plt.legend(loc='best')
In [17]: plt.show()

Fig 7.10: Plot showing 100 samples drawn from the previously stated HMM.  
The lines connect the successive observations.
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Fig 7.10 shows the successive observations drawn from the HMM stated earlier. In 
this HMM, the initial state probability distribution favors the state 3s  as compared 
to the other two states. According to the transition matrix, the probability of 
transitioning state 3s  to 3s  is much higher as compared to transitioning from 3s  to 
any other state. Thus, we can see that most of the observations correspond to the 
state 3s  as compared to any other state.

Computing the probability of an observation
The next problem that we are going to tackle in the case of the HMM is computing 
the probability of observation given a model that is computing ( ), |P λZ X .

Let's start with a simple example of an HMM with a multinomial emission (that is, the 
observation variable being discrete quantities). In this case, the emission probability Θ  
can be represented by a matrix B such that each element ijb  equals the following:

( )| 1
1

ij t tb P Z j X i i N
j M

= = = ≤ ≤

≤ ≤

Here, N represents the number of possible states of a hidden variable and M 
represents the number of possible states of an observed variable.

Suppose { }0 1 2, , , , TZ X X X X=X L  is the sequence of states of the hidden variable. 
To compute the value of ( ), |P λZ X , we can marginalize the distribution ( ), |P λZ X  
with respect to X:

( ) ( )

( ) ( )( )

| , |

, |

P P

P P

λ λ

λ λ

=

= ⋅

∑
∑
X

X

Z Z X

Z | X X

Let's first compute the term ( )| ,P λZ X . The ( )| ,P λZ X  term is nothing but ( )P Z | X ,  
because given a model λ , tZ  only depends on tX . The ( )P Z | X  term can be 
computed as follows:

( ) ( )

1 1 2 2

1
|

T T

T

i i
i

X Z X Z X Z

P P Z X

b b b
=

=

= ⋅

∏Z | X

L
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The ( )P λX |  term can be computed directly from the initial state probability 
distribution and transition matrix as follows:

( ) ( ) ( )

0 0 1 2 1 1

0 1
1

|

T T

T

i i
i

X X X X X X X

P P X P X X

a a a

λ

π
−

−
=

=

= ⋅ ⋅

∏X |

L

Thus, ( )|P λZ  can be stated in the following way:

( ) ( ) ( )( )

0 0 1 1 1 1
1 2

,
, , ,

, |

T T T
T

X X X X Z X X Z
X X X

P P P

a b a b

λ λ λ

π
−

= ⋅

= ⋅ ⋅

∑
∑

X
Z | Z | X X

L

L

The computation of ( )|P λZ  using the preceding equation requires an exponentially 
large number of mathematical operations, precisely ( )2 1 TT N− ⋅  multiplications and 

1TN −  additions. Even for a very small value of T (for example, 100) and N as 5, 
it requires 1 722 100 5 00 10⋅ ⋅ ≈  operations. Thus, we require a more efficient way to 
compute ( )|P λZ . One such method is the forward-backward algorithm.

The forward-backward algorithm
Before going into the details of the algorithm, let's define some variables that are 
needed for this routine, the first one being the forward variable ( )i tα . It is defined  
as follows:

( ) ( )1 2, , , , |i t t it P Z Z Z X sα λ= =!

The forward variable is the probability of a partially observed sequence 
{ }1 2, , , tZ Z ZL  (until a time t) and the state is  at time t, given the model λ . ( )i tα , 
can be computed inductively as the following initialization:

( ) [ ]1 1 1,i it b z i Nπα = ⋅ ∀ ε

Here, iπ  represents the initial probability for the state is  and 1ib z  represents the 
probability of 1Z  given the state of 1 iX s= .
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The induction step:

( ) ( )1 1
1

, 1

1

N

t t ij j t
i

j i a b z t T

j N

α α+ +
=

⎡ ⎤= ≤ <⎢ ⎥⎣ ⎦
≤ ≤

∑

Here, ija  represents the probability of transitioning from the state is  to the state js  
and 1j tb z +  represents the probability of 1tZ +  given 1 jX s= .

The termination step:

( ) ( )

( )

1 2
1

1

| , , , , |
N

T T i
i
N

T
i

P P Z Z Z X s

i

λ λ

α

=

=

= =

=

∑

∑

Z !

The induction step is the core of the computational method.

Fig 7.11: Computation of ( )1t jα + as shown in the induction step
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Fig 7.11 shows the computation algorithm used in the induction step. The values 
of all the ( )i tα  instances are weight-summed, where the weightings represent the 
probability of transitioning from the state is  to the state js .

Fig 7.12: Implementation of the computation of ( )1t jα +  in terms of the lattice of observation t and states i

This operation only requires 2N T⋅  operations, as opposed to the 2 TT N⋅  operations 
required by the direct calculation. So, in the case of N = 5 and T = 100, we only 
require 3000 computations.

In a similar manner, we can use a backward pass to compute the backward variable 
( )t iβ . This is defined as follows:

( ) ( )1 2, , , | ,t t t T t ii P Z Z Z X sβ λ+ += =L

The initialization step:

( ) [ ]1 1,i T i Nβ = ∀ ε

The induction step:

( ) ( )1 1
1

, 1, 2, ,1

1

N

i ij j t t
j

t a b z j t T T

j N

β β+ +
=

= = − −

≤ ≤

∑ L
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The hmmlearn module facilitates the computation of ( )|P λZ . For example, let's take 
the previously stated example of the GaussianHMM model:

# mean of the emission probability distribution for various states 
# were:
# [0.0, 0.0],
# [0.0, 10.0],
# [10.0, 0.0]

# So if an observations are sampled from some other gaussian 
# distribution with mean centered at different location such as:
# [5, 5]
# [-5, 0]
# the probability of these observations coming from this model 
# should be very low.

# generating observations
In [18]: observations = np.row_stack((
                           np.random.multivariate_normal(
                             [5, 5], [[0.5, 0], [0, 0.5]], 10),
                           np.random.multivariate_normal(
                             [-5, 0], [[0.5, 0], [0, 0.5]], 10)))

# model.score returns the log-probability of P(observations | 
# model)
In [19]: score_1 = model_gaussian.score(observations)
In [20]: print(score_1)
-728.50717880180241

# Lets try to check whether observations sampled from the 
# multivariate normal distributions that were used in our HMM 
# model provides greater value of score or not
In [21]: observations = np.row_stack((
                            np.random.multivariate_normal(
                               [10, 0], [[0.5, 0], [0, 0.5]], 10),
                            np.random.multivariate_normal(
                               [0, 0], [[0.5, 0], [0, 0.5]], 2),
                            np.random.multivariate_normal(
                               [0, 10], [[0.5, 0], [0, 0.5]], 4)))
In [22]: score_2 = model_gaussian.score(observations)
In [23]: print(score_2)
-44.709532774805481

# We can see that results matches our intuition
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Computing the state sequence
Apart from computing ( )|P λZ , the other major challenges in the case of the HMM 
(given an observation sequence { }1 2, , , TZ Z ZZ = L  and a model λ ) is computing the 
state sequence { }1 2, , , TX X XX = L  that best explains the model. A single best-state 
sequence is defined as the state sequence X that maximizes ( ),P λX | Z , which is 
equivalent to maximizing ( ),P λX | Z .

The Viterbi algorithm is a dynamic programming-based algorithm used to compute 
the best-state sequence. Before going into the details of the algorithm, let's define a 
quantity ( )t iδ  as the best score along a single-state sequence at time t, which accounts 
for the first t observations and ends in the state is . This can be defined as follows:

( ) ( )
1 2 1

1 2 1 1, ,
max , , , , , Z , , Z |

t
t t t i tX X X
i P X X X X sδ λ

−
−= =

L
L L

By the induction, we have the following:

( ) ( )
11 max

tt t ij j Zi
i i a bδ δ

++
⎡ ⎤= ⋅⎣ ⎦

To actually retrieve a state sequence, we need to keep track of the argument that  
is maximized for each t and j using the array ( )t jυ/ . The complete procedure is  
as follows:

The initialization step:

( ) [ ]
( )

11

1

. 1,

0
i iZi b i N

i

δ π

υ

= ∀

=/

ε

The recursion step:

( )
[ ]

( )11,
max 2

1
tt t ij j Zi N

j i a b t T

j N

δ δ −⎡ ⎤= ⋅ ⋅ ≤ ≤⎣ ⎦

≤ ≤
ε

( )
[ ]

( )11,
argmax 2

1

t t iji N
j i a t T

j N
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The termination step:
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The state sequence backtracking step:

( )* *
1 1 , 1, 2, ,1t t tq q t T Tυ + += = − −/ !

This method is similar to what we discussed in the case of forward calculations, 
except for a few minor changes such as the inclusion of a backtracking step and 
maximization over previous states instead of summation.

The hmmlearn module also facilitates the computation of a state sequence. For 
example, using the previously defined HMM model with a multinomial emission:

# creating a set of random observations
# As the observations can be one of the 5 states that is [0, 4], 
# we can create them using np.random.randint
In [24]: random_walk = np.random.randint(low=0, high=5, size=50)

# the array should be in the form of (n_observations, n_features)
# reshaping the array
In [25]: random_walk = random_walk[:, np.newaxis]

# model.decode finds the most likely state sequence corresponding 
# to the observation. By default it uses Viterbi algorithm
# it returns 2 parameters, the first one being log probability of 
# the maximum likelihood path through the HMM and second being the 
# state sequence.
In [26]: logprob, state_sequence = model_multinomial.decode(
                                                 random_walk)



Chapter 7

[ 249 ]

The next major problem in HMM is to compute the model parameters given the 
observations. The details of the algorithm are beyond the scope of this book, but we 
will provide an example of its implementation using hmmlearn.

To train an HMM or to compute its model parameters, 
hmmlearn has a fit method in all the HMM classes. The 
input is a list of the sequence of the observed value. As 
the expectation-maximization (EM) algorithm, which is 
used to compute the model parameters, is a gradient-based 
optimization method, it will generally get stuck in a local 
optima. One workaround is to try the fit method with 
various initializations and select the highest scoring model.

In [1]: from __future__ import print_function

In [2]: import datetime
In [3]: import numpy as np
In [4]: import matplotlib.pyplot as plt
In [5]: from matplotlib.finance import quotes_historical_yahoo
In [6]: from matplotlib.dates import YearLocator, MonthLocator, 
DateFormatter
In [7]: from hmmlearn.hmm import GaussianHMM

# Downloading the data
In [8]: date1 = datetime.date(1995, 1, 1)  # start date
In [9]: date2 = datetime.date(2012, 1, 6)  # end date

# get quotes from yahoo finance
In [10]: quotes = quotes_historical_yahoo("INTC", date1, date2)

# unpack quotes
In [11]: dates = np.array([q[0] for q in quotes], dtype=int)
In [12]: close_v = np.array([q[2] for q in quotes])
In [13]: volume = np.array([q[5] for q in quotes])[1:]

# take diff of close value
# this makes len(diff) = len(close_t) - 1
# therefore, others quantity also need to be shifted
In [14]: diff = close_v[1:] - close_v[:-1]
In [15]: dates = dates[1:]
In [16]: close_v = close_v[1:]

# pack diff and volume for training
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In [17]: X = np.column_stack([diff, volume])

# Run Gaussian HMM
In [18]: n_components = 5

# make an HMM instance and execute fit
In [19]: model = GaussianHMM(n_components, covariance_type="diag", 
                             n_iter=1000)

In [20]: model.fit([X])

# predict the optimal sequence of internal hidden state
In [21]: hidden_states = model.predict(X)

# print trained parameters and plot
In [22]: print("Transition matrix")
In [23]: print(model.transmat_)

In [24]: for i in range(n_components):
             print("%dth hidden state" % i)
             print("mean = ", model.means_[i])
             print("var = ", np.diag(model.covars_[i]))

In [25]: years = YearLocator()   # every year
In [26]: months = MonthLocator()  # every month
In [27]: yearsFmt = DateFormatter('%Y')
In [28]: fig = plt.figure()
In [29]: ax = fig.add_subplot(111)

In [30]: for i in range(n_components):
         # use fancy indexing to plot data in each state
             idx = (hidden_states == i)
             ax.plot_date(dates[idx], close_v[idx], 'o', 
                          label="%dth hidden state" % i)
             ax.legend()

# format the ticks
In [31]: ax.xaxis.set_major_locator(years)
In [32]: ax.xaxis.set_major_formatter(yearsFmt)
In [33]: ax.xaxis.set_minor_locator(months)
In [34]: ax.autoscale_view()

# format the coords message box
In [35]: ax.fmt_xdata = DateFormatter('%Y-%m-%d')
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In [36]: ax.fmt_ydata = lambda x: '$%1.2f' % x
In [37]: ax.grid(True)
In [38]: ax.set_xlabel('Year')
In [39]: ax.set_ylabel('Closing Volume')

In [40]: fig.autofmt_xdate()
In [41]: plt.show()

Fig 7.13: Plot showing the closing volume for each of the hidden states across time.  
It is the output of the previously stated code.

Applications
One of the major applications of the HMM is in the field of speech recognition. In 
this section, we will briefly describe the process of speech recognition.

In speech recognition, our job is to compute the most probable word corresponding 
to a speech signal or acoustic observation. Our aim is to compute the following:
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Here, O corresponds to the acoustic observation and W is the set of all possible 
words. The likelihood ( )|P O W  is determined by an acoustic model, and the prior 
P(W) is determined by a language model.

Fig 7.14 shows the architecture of an HMM-based speech recognition system. There 
are three major components:

• Acoustic model
• Language model
• Pronunciation dictionary

Fig 7.14: Architecture of an HMM-based speech recognition system

The acoustic model
The basic units of sound represented by the acoustic model are the phonetics. For 
example, the word "bat" is composed of three phonetics, /b/ /ae/ /t/. About 40 
such phonetics are required for English. Each spoken letter W can be decomposed 
into a sequence of WK  base phonetics. This sequence is called its pronunciation. 
Thus, a word can be represented by an HMM, with hidden state variables being the 
base phonetics. For example, the HMM for the word bat is as follows:
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Fig 7.15: An HMM corresponding to the word "bat"

So, with the proper definition of the transition matrix A, the initial state probability 
distribution π , and the emission probability Θ , we can compute the value of 
( )|P O W  using the forward algorithm, as discussed in the previous sections.

The language model
The language model provides context to distinguish between words and phrases that 
sound similar. For example, the phrases "recognize speech" and "wreck a nice beach" 
may be pronounced the same but mean very different things. These ambiguities are 
easier to resolve when evidence from the language model is incorporated with the 
pronunciation dictionary and the acoustic model. Further, they also help in faster 
speech recognition by restricting the search space to the most probable words rather 
than all possible words. Generally, the N-gram language model is used in most 
speech recognition applications, where the prior probability of a word sequence 

{ }1 2, , , KW W W=W L  is computed as follows:

( ) ( )1 2 1
1
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K

i i i i N
i
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Thus, to build speech recognition, we must perform the following steps:

1. For each word υ  in the vocabulary, we must build an HMM υλ  by 
estimating model parameters that optimize the likelihood of the training set 
acoustic observation for the thυ  word.

2. Build a language model corresponding to the vocabulary.
3. For each acoustic observation { }1 2, , , TO O O=O L , we must compute the 

value of ( )|P υλO  and select the value of v that maximizes ( ) ( )|P Pυλ υ⋅O .

Summary
In this chapter, we discussed special cases in graphical models that are widely used 
in the real world. We discussed the Naive Bayes model, which is a very simple 
model but is widely used in text classification and is known to give very good 
results. Then, we talked about DBNs, which are generally used in cases where we 
want to model some problem in which the values of the variables change with time. 
We discussed the Hidden Markov model, which is a very simple case of the DBN 
and is widely used in the field of speech recognition.
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